42-Issue 7
Permanent URI for this collection
Browse
Browsing 42-Issue 7 by Title
Now showing 1 - 20 of 57
Results Per Page
Sort Options
Item 3D Object Tracking for Rough Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Song, Xiuqiang; Xie, Weijian; Li, Jiachen; Wang, Nan; Zhong, Fan; Zhang, Guofeng; Qin, Xueying; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Visual monocular 6D pose tracking methods for textureless or weakly-textured objects heavily rely on contour constraints established by the precise 3D model. However, precise models are not always available in reality, and rough models can potentially degrade tracking performance and impede the widespread usage of 3D object tracking. To address this new problem, we propose a novel tracking method that handles rough models. We reshape the rough contour through the probability map, which can avoid explicitly processing the 3D rough model itself. We further emphasize the inner region information of the object, where the points are sampled to provide color constrains. To sufficiently satisfy the assumption of small displacement between frames, the 2D translation of the object is pre-searched for a better initial pose. Finally, we combine constraints from both the contour and inner region to optimize the object pose. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on both roughly and precisely modeled objects. Particularly for the highly rough model, the accuracy is significantly improved (40.4% v.s. 16.9%).Item Authoring Terrains with Spatialised Style(The Eurographics Association and John Wiley & Sons Ltd., 2023) Perche, Simon; Peytavie, Adrien; Benes, Bedrich; Galin, Eric; GuƩrin, Eric; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Various terrain modelling methods have been proposed for the past decades, providing efficient and often interactive authoring tools. However, they seldom include any notion of style, which is critical for designers in the entertainment industry. We introduce a new generative network method that bridges the gap between automatic terrain synthesis and authoring, providing a versatile set of authoring tools allowing spatialised style. We build upon the StyleGAN2 architecture and extend it with authoring tools. Given an input sketch or existing elevation map, our method generates a terrain with features that can be authored, enhanced, and augmented using interactive brushes and style manipulation tools. The strength of our approach lies in the versatility and interoperability of the different tools. We validate our method quantitatively with drainage calculation against other previous techniques and qualitatively by asking users to follow a prompt or freely create a terrain.Item Balancing Rotation Minimizing Frames with Additional Objectives(The Eurographics Association and John Wiley & Sons Ltd., 2023) Mossman, Christopher; Bartels, Richard H.; Samavati, Faramarz F.; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.When moving along 3D curves, one may require local coordinate frames for visited points, such as for animating virtual cameras, controlling robotic motion, or constructing sweep surfaces. Often, consecutive coordinate frames should be similar, avoiding sharp twists. Previous work achieved this goal by using various methods to approximate rotation minimizing frames (RMFs) with respect to a curve's tangent. In this work, we use Householder transformations to construct preliminary tangentaligned coordinate frames and then optimize these initial frames under the constraint that they remain tangent-aligned. This optimization minimizes the weighted sum of squared distances between selected vectors within the new frames and fixed vectors outside them (such as the axes of previous frames). By selecting different vectors for this objective function, we reproduce existing RMF approximation methods and modify them to consider additional objectives beyond rotation minimization. We also provide some example computer graphics use cases for this new frame tracking.Item BubbleFormer: Bubble Diagram Generation via Dual Transformer Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Sun, Jiahui; Zheng, Liping; Zhang, Gaofeng; Wu, Wenming; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Bubble diagrams serve as a crucial tool in the field of architectural planning and graphic design. With the surge of Artificial Intelligence Generated Content (AIGC), there has been a continuous emergence of research and development efforts focused on utilizing bubble diagrams for layout design and generation. However, there is a lack of research efforts focused on bubble diagram generation. In this paper, we propose a novel generative model, BubbleFormer, for generating diverse and plausible bubble diagrams. BubbleFormer consists of two improved Transformer networks: NodeFormer and EdgeFormer. These networks generate nodes and edges of the bubble diagram, respectively. To enhance the generation diversity, a VAE module is incorporated into BubbleFormer, allowing for the sampling and generation of numerous high-quality bubble diagrams. BubbleFormer is trained end-to-end and evaluated through qualitative and quantitative experiments. The results demonstrate that Bubble- Former can generate convincing and diverse bubble diagrams, which in turn drive downstream tasks to produce high-quality layout plans. The model also shows generalization capabilities in other layout generation tasks and outperforms state-of-the-art techniques in terms of quality and diversity. In previous work, bubble diagrams as input are provided by users, and as a result, our bubble diagram generative model fills a significant gap in automated layout generation driven by bubble diagrams, thereby enabling an end-to-end layout design and generation. Code for this paper is at https://github.com/cgjiahui/BubbleFormer.Item Combating Spurious Correlations in Loose-fitting Garment Animation Through Joint-Specific Feature Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Diao, Junqi; Xiao, Jun; He, Yihong; Jiang, Haiyong; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.We address the 3D animation of loose-fitting garments from a sequence of body motions. State-of-the-art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint-wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint-specific pose space deformation (PSD) to decompose the high-dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at https://github.com/qiji77/JointNet.Item Continuous Layout Editing of Single Images with Diffusion Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhang, Zhiyuan; Huang, Zhitong; Liao, Jing; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However, none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms other baselines that were modified to support this task. Code is available at our project page.Item Controllable Garment Image Synthesis Integrated with Frequency Domain Features(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liang, Xinru; Mo, Haoran; Gao, Chengying; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Using sketches and textures to synthesize garment images is able to conveniently display the realistic visual effect in the design phase, which greatly increases the efficiency of fashion design. Existing garment image synthesis methods from a sketch and a texture tend to fail in working on complex textures, especially those with periodic patterns. We propose a controllable garment image synthesis framework that takes as inputs an outline sketch and a texture patch and generates garment images with complicated and diverse texture patterns. To improve the performance of global texture expansion, we exploit the frequency domain features in the generative process, which are from a Fast Fourier Transform (FFT) and able to represent the periodic information of the patterns. We also introduce a perceptual loss in the frequency domain to measure the similarity of two texture pattern patches in terms of their intrinsic periodicity and regularity. Comparisons with existing approaches and sufficient ablation studies demonstrate the effectiveness of our method that is capable of synthesizing impressive garment images with diverse texture patterns while guaranteeing proper texture expansion and pattern consistency.Item CP-NeRF: Conditionally Parameterized Neural Radiance Fields for Cross-scene Novel View Synthesis(The Eurographics Association and John Wiley & Sons Ltd., 2023) He, Hao; Liang, Yixun; Xiao, Shishi; Chen, Jierun; Chen, Yingcong; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Neural radiance fields (NeRF) have demonstrated a promising research direction for novel view synthesis. However, the existing approaches either require per-scene optimization that takes significant computation time or condition on local features which overlook the global context of images. To tackle this shortcoming, we propose the Conditionally Parameterized Neural Radiance Fields (CP-NeRF), a plug-in module that enables NeRF to leverage contextual information from different scales. Instead of optimizing the model parameters of NeRFs directly, we train a Feature Pyramid hyperNetwork (FPN) that extracts view-dependent global and local information from images within or across scenes to produce the model parameters. Our model can be trained end-to-end with standard photometric loss from NeRF. Extensive experiments demonstrate that our method can significantly boost the performance of NeRF, achieving state-of-the-art results in various benchmark datasets.Item D-Cloth: Skinning-based Cloth Dynamic Prediction with a Three-stage Network(The Eurographics Association and John Wiley & Sons Ltd., 2023) Li, Yu Di; Tang, Min; Chen, Xiao Rui; Yang, Yun; Tong, Ruo Feng; An, Bai Lin; Yang, Shuang Cai; Li, Yao; Kou, Qi Long; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.We propose a three-stage network that utilizes a skinning-based model to accurately predict dynamic cloth deformation. Our approach decomposes cloth deformation into three distinct components: static, coarse dynamic, and wrinkle dynamic components. To capture these components, we train our three-stage network accordingly. In the first stage, the static component is predicted by constructing a static skinning model that incorporates learned joint increments and skinning weight increments. Then, in the second stage, the coarse dynamic component is added to the static skinning model by incorporating serialized skeleton information. Finally, in the third stage, the mesh sequence stage refines the prediction by incorporating the wrinkle dynamic component using serialized mesh information. We have implemented our network and used it in a Unity game scene, enabling real-time prediction of cloth dynamics. Our implementation achieves impressive prediction speeds of approximately 3.65ms using an NVIDIA GeForce RTX 3090 GPU and 9.66ms on an Intel i7-7700 CPU. Compared to SOTA methods, our network excels in accurately capturing fine dynamic cloth deformations.Item DAFNet: Generating Diverse Actions for Furniture Interaction by Learning Conditional Pose Distribution(The Eurographics Association and John Wiley & Sons Ltd., 2023) Jin, Taeil; Lee, Sung-Hee; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.We present DAFNet, a novel data-driven framework capable of generating various actions for indoor environment interactions. By taking desired root and upper-body poses as control inputs, DAFNet generates whole-body poses suitable for furniture of various shapes and combinations. To enable the generation of diverse actions, we introduce an action predictor that automatically infers the probabilities of individual action types based on the control input and environment. The action predictor is learned in an unsupervised manner by training Gaussian Mixture Variational Autoencoder (GMVAE). Additionally, we propose a two-part normalizing flow-based pose generator that sequentially generates upper and lower body poses. This two-part model improves motion quality and the accuracy of satisfying conditions over a single model generating the whole body. Our experiments show that DAFNet can create continuous character motion for indoor scene scenarios, and both qualitative and quantitative evaluations demonstrate the effectiveness of our framework.Item Data-Driven Ink Painting Brushstroke Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2023) Madono, Koki; Simo-Serra, Edgar; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Although digital painting has advanced much in recent years, there is still a significant divide between physically drawn paintings and purely digitally drawn paintings. These differences arise due to the physical interactions between the brush, ink, and paper, which are hard to emulate in the digital domain. Most ink painting approaches have focused on either using heuristics or physical simulation to attempt to bridge the gap between digital and analog, however, these approaches are still unable to capture the diversity of painting effects, such as ink fading or blotting, found in the real world. In this work, we propose a data-driven approach to generate ink paintings based on a semi-automatically collected high-quality real-world ink painting dataset. We use a multi-camera robot-based setup to automatically create a diversity of ink paintings, which allows for capturing the entire process in high resolution, including capturing detailed brush motions and drawing results. To ensure high-quality capture of the painting process, we calibrate the setup and perform occlusion-aware blending to capture all the strokes in high resolution in a robust and efficient way. Using our new dataset, we propose a recursive deep learning-based model to reproduce the ink paintings stroke by stroke while capturing complex ink painting effects such as bleeding and mixing. Our results corroborate the fidelity of the proposed approach to real hand-drawn ink paintings in comparison with existing approaches. We hope the availability of our dataset will encourage new research on digital realistic ink painting techniques.Item Data-guided Authoring of Procedural Models of Shapes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hossain, Ishtiaque; Shen, I-Chao; Igarashi, Takeo; Kaick, Oliver van; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Procedural models enable the generation of a large amount of diverse shapes by varying the parameters of the model. However, writing a procedural model for replicating a collection of reference shapes is difficult, requiring much inspection of the original and replicated shapes during the development of the model. In this paper, we introduce a data-guided method for aiding a programmer in creating a procedural model to replicate a collection of reference shapes. The user starts by writing an initial procedural model, and the system automatically predicts the model parameters for reference shapes, also grouping shapes by how well they are approximated by the current procedural model. The user can then update the procedural model based on the given feedback and iterate the process. Our system thus automates the tedious process of discovering the parameters that replicate reference shapes, allowing the programmer to focus on designing the high-level rules that generate the shapes. We demonstrate through qualitative examples and a user study that our method is able to speed up the development time for creating procedural models of 2D and 3D man-made shapes.Item Deep Shape and SVBRDF Estimation using Smartphone Multi-lens Imaging(The Eurographics Association and John Wiley & Sons Ltd., 2023) Fan, Chongrui; Lin, Yiming; Ghosh, Abhijeet; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.We present a deep neural network-based method that acquires high-quality shape and spatially varying reflectance of 3D objects using smartphone multi-lens imaging. Our method acquires two images simultaneously using a zoom lens and a wide angle lens of a smartphone under either natural illumination or phone flash conditions, effectively functioning like a single-shot method. Unlike traditional multi-view stereo methods which require sufficient differences in viewpoint and only estimate depth at a certain coarse scale, our method estimates fine-scale depth by utilising an optical-flow field extracted from subtle baseline and perspective due to different optics in the two images captured simultaneously. We further guide the SVBRDF estimation using the estimated depth, resulting in superior results compared to existing single-shot methods.Item A Differential Diffusion Theory for Participating Media(The Eurographics Association and John Wiley & Sons Ltd., 2023) Cen, Yunchi; Li, Chen; Li, Frederick W. B.; Yang, Bailin; Liang, Xiaohui; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.We present a novel approach to differentiable rendering for participating media, addressing the challenge of computing scene parameter derivatives. While existing methods focus on derivative computation within volumetric path tracing, they fail to significantly improve computational performance due to the expensive computation of multiply-scattered light. To overcome this limitation, we propose a differential diffusion theory inspired by the classical diffusion equation. Our theory enables real-time computation of arbitrary derivatives such as optical absorption, scattering coefficients, and anisotropic parameters of phase functions. By solving derivatives through the differential form of the diffusion equation, our approach achieves remarkable speed gains compared to Monte Carlo methods. This marks the first differentiable rendering framework to compute scene parameter derivatives based on diffusion approximation. Additionally, we derive the discrete form of diffusion equation derivatives, facilitating efficient numerical solutions. Our experimental results using synthetic and realistic images demonstrate the accurate and efficient estimation of arbitrary scene parameter derivatives. Our work represents a significant advancement in differentiable rendering for participating media, offering a practical and efficient solution to compute derivatives while addressing the limitations of existing approaches.Item Dissection Puzzles Composed of Multicolor Polyominoes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kita, Naoki; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Dissection puzzles leverage geometric dissections, wherein a set of puzzle pieces can be reassembled in various configurations to yield unique geometric figures. Mathematically, a dissection between two 2D polygons can always be established. Consequently, researchers and puzzle enthusiasts strive to design unique dissection puzzles using the fewest pieces feasible. In this study, we introduce novel dissection puzzles crafted with multi-colored polyominoes. Diverging from the traditional aim of establishing geometric dissection between two 2D polygons with the minimal piece count, we seek to identify a common pool of polyomino pieces with colored faces that can be configured into multiple distinct shapes and appearances. Moreover, we offer a method to identify an optimized sequence for rearranging pieces from one form to another, thus minimizing the total relocation distance. This approach can guide users in puzzle assembly and lessen their physical exertion when manually reconfiguring pieces. It could potentially also decrease power consumption when pieces are reorganized using robotic assistance. We showcase the efficacy of our proposed approach through a wide range of shapes and appearances.Item Efficient Caustics Rendering via Spatial and Temporal Path Reuse(The Eurographics Association and John Wiley & Sons Ltd., 2023) Xu, Xiaofeng; Wang, Lu; Wang, Beibei; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Caustics are complex optical effects caused by the light being concentrated in a small area due to reflection or refraction on surfaces with low roughness, typically under a sharp light source. Rendering caustic effects is challenging for Monte Carlobased approaches, due to the difficulties of sampling the specular paths. One effective solution is using the specular manifold to locate these valid specular paths. Unfortunately, it needs many iterations to find these paths, leading to a long rendering time. To address this issue, our key insight is that the specular paths tend to be similar for neighboring shading points. To this end, we propose to reuse the specular paths spatially. More specifically, we generate some specular path samples with a low sample rate and then reuse these specular path samples as the initialization for specular manifold walk among neighboring shading points. In this way, much fewer specular path-searching iterations are performed, due to the efficient initialization close to the final solution. Furthermore, this reuse strategy can be extended for dynamic scenes in a temporal manner, such as light moving or specular geometry deformation. Our method outperforms current state-of-the-art methods and can handle multiple bounces of light and various scenes.Item Efficient Interpolation of Rough Line Drawings(The Eurographics Association and John Wiley & Sons Ltd., 2023) Chen, Jiazhou; Zhu, Xinding; Even, Melvin; Basset, Jean; BƩnard, Pierre; Barla, Pascal; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.In traditional 2D animation, sketches drawn at distant keyframes are used to design motion, yet it would be far too laborintensive to draw all the inbetween frames to fully visualize that motion. We propose a novel efficient interpolation algorithm that generates these intermediate frames in the artist's drawing style. Starting from a set of registered rough vector drawings, we first generate a large number of candidate strokes during a pre-process, and then, at each intermediate frame, we select the subset of those that appropriately conveys the underlying interpolated motion, interpolates the stroke distributions of the key drawings, and introduces a minimum amount of temporal artifacts. In addition, we propose quantitative error metrics to objectively evaluate different stroke selection strategies. We demonstrate the potential of our method on various animations and drawing styles, and show its superiority over competing raster- and vector-based methods.Item Efficient Neural Representation of Volumetric Data using Coordinate-Based Networks.(The Eurographics Association and John Wiley & Sons Ltd., 2023) Devkota, Sudarshan; Pattanaik, Sumant; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.In this paper, we propose an efficient approach for the compression and representation of volumetric data utilizing coordinatebased networks and multi-resolution hash encoding. Efficient compression of volumetric data is crucial for various applications, such as medical imaging and scientific simulations. Our approach enables effective compression by learning a mapping between spatial coordinates and intensity values. We compare different encoding schemes and demonstrate the superiority of multiresolution hash encoding in terms of compression quality and training efficiency. Furthermore, we leverage optimization-based meta-learning, specifically using the Reptile algorithm, to learn weight initialization for neural representations tailored to volumetric data, enabling faster convergence during optimization. Additionally, we compare our approach with state-of-the-art methods to showcase improved image quality and compression ratios. These findings highlight the potential of coordinate-based networks and multi-resolution hash encoding for an efficient and accurate representation of volumetric data, paving the way for advancements in large-scale data visualization and other applications.Item An Efficient Self-supporting Infill Structure for Computational Fabrication(The Eurographics Association and John Wiley & Sons Ltd., 2023) Wang, Shengfa; Liu, Zheng; Hu, Jiangbei; Lei, Na; Luo, Zhongxuan; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Efficiently optimizing the internal structure of 3D printing models is a critical focus in the field of industrial manufacturing, particularly when designing self-supporting structures that offer high stiffness and lightweight characteristics. To tackle this challenge, this research introduces a novel approach featuring a self-supporting polyhedral structure and an efficient optimization algorithm. Specifically, the internal space of the model is filled with a combination of self-supporting octahedrons and tetrahedrons, strategically arranged to maximize structural integrity. Our algorithm optimizes the wall thickness of the polyhedron elements to satisfy specific stiffness requirements, while ensuring efficient alignment of the filled structures in finite element calculations. Our approach results in a considerable decrease in optimization time. The optimization process is stable, converges rapidly, and consistently delivers effective results. Through a series of experiments, we have demonstrated the effectiveness and efficiency of our method in achieving the desired design objectivesItem Enhancing Low-Light Images: A Variation-based Retinex with Modified Bilateral Total Variation and Tensor Sparse Coding(The Eurographics Association and John Wiley & Sons Ltd., 2023) Yang, Weipeng; Gao, Hongxia; Zou, Wenbin; Huang, Shasha; Chen, Hongsheng; Ma, Jianliang; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.Low-light conditions often result in the presence of significant noise and artifacts in captured images, which can be further exacerbated during the image enhancement process, leading to a decrease in visual quality. This paper aims to present an effective low-light image enhancement model based on the variation Retinex model that successfully suppresses noise and artifacts while preserving image details. To achieve this, we propose a modified Bilateral Total Variation to better smooth out fine textures in the illuminance component while maintaining weak structures. Additionally, tensor sparse coding is employed as a regularization term to remove noise and artifacts from the reflectance component. Experimental results on extensive and challenging datasets demonstrate the effectiveness of the proposed method, exhibiting superior or comparable performance compared to state-ofthe- art approaches. Code, dataset and experimental results are available at https://github.com/YangWeipengscut/BTRetinex.