• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2012
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2012
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Geometry Decompression on Graphics Hardware

    Thumbnail
    View/Open
    quirinmeyer.pdf (3.522Mb)
    Date
    2012-08-01
    Author
    Meyer, Quirin ORCID
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    Real-Time Computer Graphics focuses on generating images fast enough to cause the illusion of a continuous motion. It is used in science, engineering, computer games, image processing, and design. Special purpose graphics hardware, a so-called graphics processing unit (GPU), accelerates the image generation process substantially. Therefore, GPUs have become indispensable tools for Real-Time Computer Graphics. The purpose of GPUs is to create two-dimensional (2D) images from threedimensional (3D) geometry. Thereby, 3D geometry resides in GPU memory. However, the ever increasing demand for more realistic images constantly pushes geometry memory consumption. This makes GPU memory a limiting resource in many Real-Time Computer Graphics applications. An effective way of getting more geometry into GPU memory is to compress geometry.In this thesis, we introduce novel algorithms for compressing and decompressing geometry. We propose methods to compress and decompress 3D positions, 3D unit vectors, and topology of triangle meshes. Thereby, we obtain compression ratios from 2:1 to 26:1. We focus on exploiting the high degree of parallelism available on GPUs for decompression. This allows our decompression techniques to run in real-time and impact rendering speed only little. At the same time, our techniques achieve high image quality: images, generated from compressed geometry, are visually indistinguishable from images generated from non-compressed geometry. Moreover, our methods are easy to combine with existing rendering techniques. Thereby, a wide range of applications may benefit from our results.
    URI
    http://diglib.eg.org/handle/10.2312/8294
    Collections
    • 2012

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA