• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2009
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SELF-DELAUNAY MESHES FOR SURFACES

    Thumbnail
    View/Open
    dyer.pdf (3.185Mb)
    Date
    2010
    Author
    Dyer, Ramsay
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    In the Euclidean plane, a Delaunay triangulation can be characterized by the requirementthat the circumcircle of each triangle be empty of vertices of all other triangles. For triangulatinga surface S in R3, the Delaunay paradigm has typically been employed in the formof the restricted Delaunay triangulation, where the empty circumcircle property is definedby using the Euclidean metric in R3 to measure distances on the surface. More recently, theintrinsic (geodesic) metric of S has also been employed to define the Delaunay condition.In either case the resulting mesh M is known to approximate S with increasing accuracyas the density of the sample points increases. However, the use of the reference surface Sto define the Delaunay criterion is a serious limitation. In particular, in the absence of theoriginal reference surface, there is no way of verifying if a given mesh meets the criterion.We define a self-Delaunay mesh as a triangle mesh that is a Delaunay triangulation ofits vertex set with respect to the intrinsic metric of the mesh itself. This yields a discretesurface representation criterion that can be validated by the properties of the mesh alone,independent of any reference surface the mesh is supposed to represent. The intrinsic Delaunaytriangulation that characterizes self-Delaunay meshes makes them a natural domainfor discrete differential geometry, and the discrete exterior calculus in particular.We examine self-Delaunay meshes and their relationship with other Delaunay structuresfor surface representation. We study sampling conditions relevant to the intrinsic approach,and compare these with traditional sampling conditions which are based on extrinsic quantitiesand distances in the ambient Euclidean space. We also provide practical and provablycorrect algorithms for constructing self-Delaunay meshes. Of particular interest in thiscontext is the extrinsic edge flipping algorithm which extends the familiar algorithm forproducing planar Delaunay triangulations.
    URI
    http://diglib.eg.org/handle/10.2312/8216
    Collections
    • 2009

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA