• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2019
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Practical Measurement-based Modeling and Rendering of Surface Diffraction

    Thumbnail
    View/Open
    Antoine Toisoul PhD thesis 2019 (191.2Mb)
    Date
    2019
    Author
    Toisoul, Antoine
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    Computer graphics have evolved at a very fast pace over the last forty years. Most of the research in rendering has been focused on recreating visual effects that can be explained with geometric optics, such as reflections from diffuse and specular surfaces, refraction and volumetric scattering. Although geometric optics cover a wide range of effects related to light transport, some very impressive and colourful effects can only be explained and rendered with wave optics. This is the case of diffraction of light. Diffraction is a very common effect that causes dispersion of light i.e., the decomposition of white light into colourful patterns on a surface. It is caused by interferences between light waves when the geometry of a surface reaches a size below the coherence length of white light (around 65 micrometers). The most famous example of a diffractive surface is probably a Compact Disc on which the bits of information are stored along tracks that are small enough to diffract light. In this thesis, we present novel approaches to generate photorealistic computer renderings of diffraction of light from measurements of real-world surfaces. We present four practical measurement setups that employ commonly found hardware to acquire reflectance properties of both spatially-homogeneous diffractive surfaces and spatially-varying printed holographic surfaces. We also describe how such measurements can be employed in conjunction with a physically-based rendering model of diffraction to avoid Fourier optics simulations and therefore reduce the computational expense of diffraction rendering. Finally, we present techniques to render diffraction effects under arbitrary illumination at real-time framerates which is computationally very expensive with conventional techniques. These contributions constitute the first demonstration of realistic renderings of complex diffraction patterns observed in manufactured materials using practical measurement techniques at the interface of photography and optics. The algorithms presented in this thesis can be implemented in real-time applications such as video games and virtual reality experiences.
    URI
    https://diglib.eg.org:443/handle/10.2312/2632863
    Collections
    • 2019

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA