• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2015
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2015
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and Improvement of Optical Tracking Methods towards Registering the Deformations of 3D Non- Rigid Bodies in Real Time for Augmented Reality Applications

    Thumbnail
    View/Open
    Ibai.pdf (56.13Mb)
    Date
    2015-03-27
    Author
    Leizea, Ibai
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    Augmented Reality (AR) is a technology that aims to embed virtual objects in the real world, showing to the user the set of objects (virtual and real) as a single world. For that purpose, it is necessary to offer a perfect alignment between virtual and real objects, which increases the effectiveness of AR. The solution to this problem is known as tracking. The object tracking consists in determining at any time the position and orientation of the camera relative to the scene. Optical sensors are most commonly used to overcome the tracking problem due to their low cost implementation. However, it is often difficult to provide robustness, accuracy and low computational cost at the same time. This thesis tackles the improvement and development of the main optical tracking techniques, primarily focused on detecting the deformations of the bodies. First, it has been achieved the tracking of rigid and non-rigid planar surfaces through a monocular camera, and then, the object deformation estimation with a more complex device as a RGB-D camera has been developed. Surface tracking systems such as those based on markers have the problem of not being able to handle occlusions. Thus, this thesis raises a new marker design that offers robustness against occlusions. Furthermore, in order to handle the deformations of surfaces, a solution that recovers the camera pose and the non-rigid surface simultaneously is proposed. Continuing with the deformation handling, it has also developed a robust tracking system for reconstructing the 3D shape of deformable objects using two different physical formulations. One offers a correct physical behaviour with a low computational cost, whereas the other achieves higher levels of accuracy at the expense of higher processing time. In addition, all the presented solutions have the common factor that all are executed in real time, which is a key property for a fluently visual feedback of an AR application.
    URI
    http://diglib.eg.org/handle/10.2312/12674
    Collections
    • 2015

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA