EG 2013 - Dirk Bartz Prize
Permanent URI for this collection
Browse
Browsing EG 2013 - Dirk Bartz Prize by Title
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Effective Visual Exploration of Hemodynamics in Cerebral Aneurysms(The Eurographics Association, 2013) Neugebauer, Mathias; Gasteiger, Rocco; Janiga, Gábor; Beuing, Oliver; Preim, Bernhard; Hans-Christian Hege and Anna VilanovaCerebral aneurysms are a pathological vessel dilatation that bear a high risk of rupture. For the understanding of this risk, the analysis of hemodynamic information plays an important role in clinical research. These information are obtained by computational fluid dynamics (CFD) simulations. Thus, an effective visual exploration of patient-specific blood flow behavior in cerebral aneurysms was developed to support the domain experts in their investigation process. We present advanced visualization and interaction techniques, which provide an overview, focus-and-context views as well as multi-level explorations. Moreover, an automatic extraction process of qualitative flow characteristics, which are correlated with the risk of rupture is introduced. Although not established in clinical routine yet, interviews and informal user studies confirm the usefulness of these methods.Item High-Quality 3D Visualization of In-Situ Ultrasonography(The Eurographics Association, 2013) Viola, Ivan; Birkeland, Å.; Solteszova, V.; Helljesen, L.; Hauser, H.; Kotopoulis, S.; Nylund, K.; Ulvang, D. M.; Øye, O. K.; Hausken, T.; Gilja, O. H.; Hans-Christian Hege and Anna VilanovaIn recent years medical ultrasound has experienced a rapid development in the quality of real-time 3D ultrasound (US) imaging. The image quality of the 3D volume that was previously possible to achieve within the range of a few seconds, is now possible in a fraction of a second. This technological advance offers entirely new opportunities for the use of US in the clinic. In our project, we investigate how real-time 3D US can be combined with high-performance processing of today's graphics hardware to allow for high-quality 3D visualization and precise navigation during the examination.Item OctaVis: A Virtual Reality System for Clinical Studies and Rehabilitation(The Eurographics Association, 2013) Zell, Eduard; Dyck, Eugen; Kohsik, Agnes; Grewe, Philip; Flentge, David; Winter, York; Piefke, Martina; Botsch, Mario; Hans-Christian Hege and Anna VilanovaBrain function disorders, resulting for instance from stroke, epilepsy, or other incidents can be partially recovered by rehabilitation training. Performing neuro-rehabilitation in virtual reality systems allows for training scenarios close to daily tasks, is easily adaptable to the patients' needs, is fully controllable by clinical staff, and guarantees patient safety at all times. In this paper, we describe the OCTAVIS system, a novel virtual reality platform developed primary for clinical studies with and rehabilitation training of patients with brain function disorders. To meet the special requirements for clinical use, our system has been designed with ease of use, ease of maintenance, patient safety, space and cost efficiency in mind. Our system has been successfully deployed to four hospitals, where it is used for rehabilitation training and clinical studies. We report first results of these studies, demonstrating that our system is immersive, easy to use, and supportive for rehabilitation purposes.