EuroVis16: Eurographics Conference on Visualization
Permanent URI for this collection
Browse
Browsing EuroVis16: Eurographics Conference on Visualization by Issue Date
Now showing 1 - 20 of 51
Results Per Page
Sort Options
Item Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours(The Eurographics Association and John Wiley & Sons Ltd., 2016) Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rüdiger; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkFor an ensemble of iso-contours in multi-dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing correlations between the occurrences of iso-contours at different locations. We show that the computation of these correlations can be posed in the reduced order space as an integration problem over a region bounded by four hyper-planes. To visualize the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a number of 2D and 3D examples, using artificial and meteorological data sets.Item Decoupled Shading for Real-time Heterogeneous Volume Illumination(The Eurographics Association and John Wiley & Sons Ltd., 2016) Zhang, Yubo; Ma, Kwan-Liu; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkExisting real-time volume rendering techniques which support global illumination are limited in modeling distinct realistic appearances for classified volume data, which is a desired capability in many fields of study for illustration and education. Directly extending the emission-absorption volume integral with heterogeneous material shading becomes unaffordable for real-time applications because the high-frequency view-dependent global lighting needs to be evaluated per sample along the volume integral. In this paper, we present a decoupled shading algorithm for multi-material volume rendering that separates global incident lighting evaluation from per-sample material shading under multiple light sources. We show how the incident lighting calculation can be optimized through a sparse volume integration method. The quality, performance and usefulness of our new multi-material volume rendering method is demonstrated through several examples.Item How Ordered Is It? On the Perceptual Orderability of Visual Channels(The Eurographics Association and John Wiley & Sons Ltd., 2016) Chung, David H. S.; Archambault, Daniel; Borgo, Rita; Edwards, Darren J.; Laramee, Robert S.; Chen, Min; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkThe design of effective glyphs for visualisation involves a number of different visual encodings. Since spatial position is usually already specified in advance, we must rely on other visual channels to convey additional relationships for multivariate analysis. One such relationship is the apparent order present in the data. This paper presents two crowdsourcing empirical studies that focus on the perceptual evaluation of orderability for visual channels, namely Bertin's retinal variables. The first study investigates the perception of order in a sequence of elements encoded with different visual channels. We found evidence that certain visual channels are perceived as more ordered (for example, value) while others are perceived as less ordered (for example, hue) than the measured order present in the data. As a result, certain visual channels are more/less sensitive to disorder. The second study evaluates how visual orderability affects min and max judgements of elements in the sequence. We found that visual channels that tend to be perceived as ordered, improve the accuracy of identifying these values.Item TimeArcs: Visualizing Fluctuations in Dynamic Networks(The Eurographics Association and John Wiley & Sons Ltd., 2016) Dang, Tuan Nhon; Pendar, Nick; Forbes, Angus G.; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkIn this paper we introduce TimeArcs, a novel visualization technique for representing dynamic relationships between entities in a network. Force-directed layouts provide a way to highlight related entities by positioning them near to each other. Entities are brought closer to each other (forming clusters) by forces applied on nodes and connections between nodes. In many application domains, relationships between entities are not temporally stable, which means that cluster structures and cluster memberships also may vary across time. Our approach merges multiple force-directed layouts at different time points into a single comprehensive visualization that provides a big picture overview of the most significant clusters within a user-defined period of time. TimeArcs also supports a range of interactive features, such as allowing users to drill-down in order to see details about a particular cluster. To highlight the benefits of this technique, we demonstrate its application to various datasets, including the IMDB co-star network, a dataset showing conflicting evidences within biomedical literature of protein interactions, and collocated popular phrases obtained from political blogs.Item Towards Quantitative Visual Analytics with Structured Brushing and Linked Statistics(The Eurographics Association and John Wiley & Sons Ltd., 2016) Radoš, Sanjin; Splechtna, Rainer; Matkovic, Kresimir; Duras, Mario; Gröller, Eduard; Hauser, Helwig; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkUntil now a lot of visual analytics predominantly delivers qualitative results-based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well-established concept of linking&brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.Item PhysioEx: Visual Analysis of Physiological Event Streams(The Eurographics Association and John Wiley & Sons Ltd., 2016) Kamaleswaran, Rishikesan; Collins, Christopher; James, Andrew; McGregor, Carolyn; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkIn this work, we introduce a novel visualization technique, the Temporal Intensity Map, which visually integrates data values over time to reveal the frequency, duration, and timing of significant features in streaming data. We combine the Temporal Intensity Map with several coordinated visualizations of detected events in data streams to create PhysioEx, a visual dashboard for multiple heterogeneous data streams. We have applied PhysioEx in a design study in the field of neonatal medicine, to support clinical researchers exploring physiologic data streams. We evaluated our method through consultations with domain experts. Results show that our tool provides deep insight capabilities, supports hypothesis generation, and can be well integrated into the workflow of clinical researchers.Item Space-Time Bifurcation Lines for Extraction of 2D Lagrangian Coherent Structures(The Eurographics Association and John Wiley & Sons Ltd., 2016) Machado, Gustavo Mello; Boblest, Sebastian; Ertl, Thomas; Sadlo, Filip; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkWe present a novel and efficient technique to extract Lagrangian coherent structures in two-dimensional time-dependent vector fields. We show that this can be achieved by employing bifurcation line extraction in the space-time representation of the vector field, and generating space-time bifurcation manifolds therefrom. To show the utility and applicability of our approach, we provide an evaluation of existing extraction techniques for Lagrangian coherent structures, and compare them to our approach.Item Interactive 3D Force-Directed Edge Bundling(The Eurographics Association and John Wiley & Sons Ltd., 2016) Zielasko, Daniel; Weyers, Benjamin; Hentschel, Bernd; Kuhlen, Torsten W.; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkInteractive analysis of 3D relational data is challenging. A common way of representing such data are node-link diagrams as they support analysts in achieving a mental model of the data. However, naïve 3D depictions of complex graphs tend to be visually cluttered, even more than in a 2D layout. This makes graph exploration and data analysis less efficient. This problem can be addressed by edge bundling. We introduce a 3D cluster-based edge bundling algorithm that is inspired by the force-directed edge bundling (FDEB) algorithm [HvW09b] and fulfills the requirements to be embedded in an interactive framework for spatial data analysis. It is parallelized and scales with the size of the graph regarding the runtime. Furthermore, it maintains the edge's model and thus supports rendering the graph in different structural styles. We demonstrate this with a graph originating from a simulation of the function of a macaque brain.Item Faceted Views of Varying Emphasis (FaVVEs): a Framework for Visualising Multi-perspective Small Multiples(The Eurographics Association and John Wiley & Sons Ltd., 2016) Beecham, Roger; Rooney, Chris; Meier, Sebastian; Dykes, Jason; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo; Wong, B. L. William; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkMany datasets have multiple perspectives - for example space, time and description - and often analysts are required to study these multiple perspectives concurrently. This concurrent analysis becomes difficult when data are grouped and split into small multiples for comparison. A design challenge is thus to provide representations that enable multiple perspectives, split into small multiples, to be viewed simultaneously in ways that neither clutter nor overload. We present a design framework that allows us to do this. We claim that multi-perspective comparison across small multiples may be possible by superimposing perspectives on one another rather than juxtaposing those perspectives side-by-side. This approach defies conventional wisdom and likely results in visual and informational clutter. For this reason we propose designs at three levels of abstraction for each perspective. By flexibly varying the abstraction level, certain perspectives can be brought into, or out of, focus. We evaluate our framework through laboratory-style user tests. We find that superimposing, rather than juxtaposing, perspective views has little effect on performance of a low-level comparison task. We reflect on the user study and its design to further identify analysis situations for which our framework may be desirable. Although the user study findings were insufficiently discriminating, we believe our framework opens up a new design space for multi-perspective visual analysis.Item There is More to Streamgraphs than Movies: Better Aesthetics via Ordering and Lassoing(The Eurographics Association and John Wiley & Sons Ltd., 2016) Bartolomeo, Marco Di; Hu, Yifan; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkStreamgraphs were popularized in 2008 when The New York Times used them to visualize box office revenues for 7500 movies over 21 years. The aesthetics of a streamgraph is affected by three components: the ordering of the layers, the shape of the lowest curve of the drawing, known as the baseline, and the labels for the layers. As of today, the ordering and baseline computation algorithms proposed in the paper of Byron and Wattenberg are still considered the state of the art. However, their ordering algorithm exploits statistical properties of the movie revenue data that may not hold in other data. In addition, the baseline optimization is based on a definition of visual energy that in some cases results in considerable amount of visual distortion. We offer an ordering algorithm that works well regardless of the properties of the input data, and propose a 1-norm based definition of visual energy and the associated solution method that overcomes the limitation of the original baseline optimization procedure. Furthermore, we propose an efficient layer labeling algorithm that scales linearly to the data size in place of the brute-force algorithm adopted by Byron and Wattenberg. We demonstrate the advantage of our algorithms over existing techniques on a number of real world data sets.Item Source Inversion by Forward Integration in Inertial Flows(The Eurographics Association and John Wiley & Sons Ltd., 2016) Günther, Tobias; Theisel, Holger; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkInertial particles are finite-sized objects traveling with a certain velocity that differs from the underlying carrying flow, i.e., they are mass-dependent and subject to inertia. Their backward integration is in practice infeasible, since a slight change in the initial velocity causes extreme changes in the recovered position. Thus, if an inertial particle is observed, it is difficult to recover where it came from. This is known as the source inversion problem, which has many practical applications in recovering the source of airborne or waterborne pollutions. Inertial trajectories live in a higher dimensional spatio-velocity space. In this paper, we show that this space is only sparsely populated. Assuming that inertial particles are released with a given initial velocity (e.g., from rest), particles may reach a certain location only with a limited set of possible velocities. In fact, with increasing integration duration and dependent on the particle response time, inertial particles converge to a terminal velocity. We show that the set of initial positions that lead to the same location form a curve. We extract these curves by devising a derived vector field in which they appear as tangent curves. Most importantly, the derived vector field only involves forward integrated flow map gradients, which are much more stable to compute than backward trajectories. After extraction, we interactively visualize the curves in the domain and display the reached velocities using glyphs. In addition, we encode the rate of change of the terminal velocity along the curves, which gives a notion for the convergence to the terminal velocity. With this, we present the first solution to the source inversion problem that considers actual inertial trajectories. We apply the method to steady and unsteady flows in both 2D and 3D domains.Item Retailoring Box Splines to Lattices for Highly Isotropic Volume Representations(The Eurographics Association and John Wiley & Sons Ltd., 2016) Csébfalvi, Balázs; Rácz, Gergely; Kwan-Liu Ma and Giuseppe Santucci and Jarke van Wijk3D box splines are defined by convolving a 1D box function with itself along different directions. In volume visualization, box splines are mainly used as reconstruction kernels that are easy to adapt to various sampling lattices, such as the Cartesian Cubic (CC), Body-Centered Cubic (BCC), and Face-Centered Cubic (FCC) lattices. The usual way of tailoring a box spline to a specific lattice is to span the box spline by exactly those principal directions that span the lattice itself. However, in this case, the preferred directions of the box spline and the lattice are the same, amplifying the anisotropic effects of each other. This leads to an anisotropic volume representation with strongly preferred directions. Therefore, in this paper, we retailor box splines to lattices such that the sets of vectors that span the box spline and the lattice are disjoint sets. As the preferred directions of the box spline and the lattice compensate each other, a more isotropic volume representation can be achieved. We demonstrate this by comparing different combinations of box splines and lattices concerning their anisotropic behavior in tomographic reconstruction and volume visualization.Item GEMSe: Visualization-Guided Exploration of Multi-channel Segmentation Algorithms(The Eurographics Association and John Wiley & Sons Ltd., 2016) Fröhler, Bernhard; Möller, Torsten; Heinzl, Christoph; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkWe present GEMSe, an interactive tool for exploring and analyzing the parameter space of multi-channel segmentation algorithms. Our targeted user group are domain experts who are not necessarily segmentation specialists. GEMSe allows the exploration of the space of possible parameter combinations for a segmentation framework and its ensemble of results. Users start with sampling the parameter space and computing the corresponding segmentations. A hierarchically clustered image tree provides an overview of variations in the resulting space of label images. Details are provided through exemplary images from the selected cluster and histograms visualizing the parameters and the derived output in the selected cluster. The correlation between parameters and derived output as well as the effect of parameter changes can be explored through interactive filtering and scatter plots. We evaluate the usefulness of GEMSe through expert reviews and case studies based on three different kinds of datasets: A synthetic dataset emulating the combination of 3D X-ray computed tomography with data from K-Edge spectroscopy, a three-channel scan of a rock crystal acquired by a Talbot-Lau grating interferometer X-ray computed tomography device, as well as a hyperspectral image.Item Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models(The Eurographics Association and John Wiley & Sons Ltd., 2016) Muzic, Mathieu Le; Mindek, Peter; Sorger, Johannes; Autin, Ludovic; Goodsell, David S.; Viola, Ivan; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkIn scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes.We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification is valuable and effective for both, scientific and educational purposes.Item Hierarchical Stochastic Neighbor Embedding(The Eurographics Association and John Wiley & Sons Ltd., 2016) Pezzotti, Nicola; Höllt, Thomas; Lelieveldt, Boudewijn P. F.; Eisemann, Elmar; Vilanova, Anna; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkIn recent years, dimensionality-reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade-off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical-SNE). Using a hierarchical representation of the data, we incorporate the wellknown mantra of Overview-First, Details-On-Demand in non-linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high-dimensional structures will lead to new insights. In this paper, we explain how Hierarchical-SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep-Learning architectures and the analysis of hyperspectral images.Item Glyphs for Asymmetric Second-Order 2D Tensors(The Eurographics Association and John Wiley & Sons Ltd., 2016) Seltzer, Nicholas; Kindlmann, Gordon; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkTensors model a wide range of physical phenomena. While symmetric tensors are sufficient for some applications (such as diffusion), asymmetric tensors are required, for example, to describe differential properties of fluid flow. Glyphs permit inspecting individual tensor values, but existing tensor glyphs are fully defined only for symmetric tensors. We propose a glyph to visualize asymmetric second-order two-dimensional tensors. The glyph includes visual encoding for physically significant attributes of the tensor, including rotation, anisotropic stretching, and isotropic dilation. Our glyph design conserves the symmetry and continuity properties of the underlying tensor, in that transformations of a tensor (such as rotation or negation) correspond to analogous transformations of the glyph. We show results with synthetic data from computational fluid dynamics.Item Designing Multiple Coordinated Visualizations for Tablets(The Eurographics Association and John Wiley & Sons Ltd., 2016) Sadana, Ramik; Stasko, John; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkThe use of multiple coordinated views (MCV) in data visualization provides analytic power because it allows a person to explore data under a variety of different perspectives. Since this design pattern utilizes multiple visualizations and requires coordinated interactions across the views, a clever use of screen space is vital and many synchronized interface operations must be provided. Bringing this design pattern to tablet computers is challenging due to their small display size and the absence of keyboard and mouse input. In this article, we explain important design considerations for MCV visualization on tablets and describe a prototype MCV visualization system we have built for the iPad. The design is based on the principles of maximizing screen space for data presentation, promoting consistent interactions across visualizations, and minimizing occlusion from a person's hands.Item ConToVi: Multi-Party Conversation Exploration using Topic-Space Views(The Eurographics Association and John Wiley & Sons Ltd., 2016) El-Assady, Mennatallah; Gold, Valentin; Acevedo, Carmela; Collins, Christopher; Keim, Daniel; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkWe introduce a novel visual analytics approach to analyze speaker behavior patterns in multi-party conversations. We propose Topic-Space Views to track the movement of speakers across the thematic landscape of a conversation. Our tool is designed to assist political science scholars in exploring the dynamics of a conversation over time to generate and prove hypotheses about speaker interactions and behavior patterns. Moreover, we introduce a glyph-based representation for each speaker turn based on linguistic and statistical cues to abstract relevant text features. We present animated views for exploring the general behavior and interactions of speakers over time and interactive steady visualizations for the detailed analysis of a selection of speakers. Using a visual sedimentation metaphor we enable the analysts to track subtle changes in the flow of a conversation over time while keeping an overview of all past speaker turns. We evaluate our approach on real-world datasets and the results have been insightful to our domain experts.Item Time-Series Plots Integrated in Parallel-Coordinates Displays(The Eurographics Association and John Wiley & Sons Ltd., 2016) Gruendl, Henning; Riehmann, Patrick; Pausch, Yves; Froehlich, Bernd; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkWe present a natural extension of two-dimensional parallel-coordinates plots for revealing relationships in time-dependent multi-attribute data by building on the idea that time can be considered as the third dimension. A time slice through the visualization represents a certain point in time and can be viewed as a regular parallel-coordinates display. A vertical slice through one of the axes of the parallel-coordinates display would show a time-series plot. For a focus-and-context integration of both views, we embed time-series plots between two adjacent axes of the parallel-coordinates plot. Both time-series plots are drawn using a pseudo three-dimensional perspective with a single vanishing point. An independent parallel-coordinates panel that connects the two perspectively displayed time-series plots can move forward and backward in time to reveal changes in the relationship between the time-dependent attributes. The visualization of time-series plots in the context of the parallelcoordinates plot facilitates the exploration of time-related aspects of the data without the need to switch to a separate display. We provide a consistent set of tools for selecting and contrasting subsets of the data, which are important for various application domains.Item Visual Analysis of Defects in Glass Fiber Reinforced Polymers for 4DCT Interrupted In situ Tests(The Eurographics Association and John Wiley & Sons Ltd., 2016) Amirkhanov, Alexander; Amirkhanov, Artem; Salaberger, Dietmar; Kastner, Johann; Gröller, Eduard; Heinzl, Christoph; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkMaterial engineers use interrupted in situ tensile testing to investigate the damage mechanisms in composite materials. For each subsequent scan, the load is incrementally increased until the specimen is completely fractured. During the interrupted in situ testing of glass fiber reinforced polymers (GFRPs) defects of four types are expected to appear: matrix fracture, fiber/matrix debonding, fiber pull-out, and fiber fracture. There is a growing demand for the detection and analysis of these defects among the material engineers. In this paper, we present a novel workflow for the detection, classification, and visual analysis of defects in GFRPs using interrupted in situ tensile tests in combination with X-ray Computed Tomography. The workflow is based on the automatic extraction of defects and fibers. We introduce the automatic Defect Classifier assigning the most suitable type to each defect based on its geometrical features. We present a visual analysis system that integrates four visualization methods: 1) the Defect Viewer highlights defects with visually encoded type in the context of the original CT image, 2) the Defect Density Maps provide an overview of the defect distributions according to type in 2D and 3D, 3) the Final Fracture Surface estimates the material fracture's location and displays it as a 3D surface, 4) the 3D Magic Lens enables interactive exploration by combining detailed visualizations in the region of interest with overview visualizations as context. In collaboration with material engineers, we evaluate our solution and demonstrate its practical applicability.
- «
- 1 (current)
- 2
- 3
- »