EuroVis05: Joint Eurographics - IEEE VGTC Symposium on Visualization
Permanent URI for this collection
Browse
Browsing EuroVis05: Joint Eurographics - IEEE VGTC Symposium on Visualization by Issue Date
Now showing 1 - 20 of 38
Results Per Page
Sort Options
Item VIS-a-VE: Visual Augmentation for Virtual Environments in Surgical Training(The Eurographics Association, 2005) Chung, Adrian; Deligianni, Fani; Shah, Pallav; Wells, Athol; Yang, Guang-Zhong; Ken Brodlie and David Duke and Ken JoyPhoto-realistic rendering combined with vision techniques is an important trend in developing next generation surgical simulation devices. Training with simulator is generally low in cost and more efficient than traditional methods that involve supervised learning on actual patients. Incorporating genuine patient data in the simulation can significantly improve the efficacy of training and skills assessment. In this paper, a photo-realistic simulation architecture is described that utilises patient-specific models for training in minimally invasive surgery. The datasets are constructed by combining computer tomographic images with bronchoscopy video of the same patient so that the three dimensional structures and visual appearance are accurately matched. Using simulators enriched by a library of datasets with sufficient patient variability, trainees can experience a wide range of realistic scenarios, including rare pathologies, with correct visual information. In this paper, the matching of CT and video data is accomplished by using a newly developed 2D/3D registration method that exploits a shape from shading similarity measure. Additionally, a method has been devised to allow shading parameter estimation by modelling the bidirectional reflectance distribution function (BRDF) of the visible surfaces. The derived BRDF is then used to predict the expected shading intensity such that a texture map independent of lighting conditions can be extracted. Thus new views can be generated that were not captured in the original bronchoscopy video, thus allowing free navigation of the acquired 3D model with enhanced photo-realism.Item Interactive rendering of massive terrains on PC clusters(The Eurographics Association, 2005) Gouranton, V.; Madougou, Souley; Melin, Emmanuel; Nortet, Cyril; Ken Brodlie and David Duke and Ken JoyWe describe a parallel framework for interactive smooth rendering of massive terrains. We define a parallelization scheme for level of detail algorithms in cluster-based environments. The scheme relies on modern PC clusters capabilities to address the scalability issue of level of detail algorithms. To achieve this, we propose an eficient tile-based data partitioning method that allows both reducing load imbalance and solving the well-known border problem. At runtime level of detail computations are performed in parallel on cluster nodes. A hierarchical view frustum culling combined to a compression mechanism harnessing the frame-to-frame coherence are used to drastically reduce the inter-tasks communication overhead. We take into account level of detail algorithms visual quality issue by providing geomorphing and texturing supports. We are able to interactively and smoothly render terrains composed of hundreds of millions to billions of polygons on a cluster of 8 PCs.Item Version-Centric Visualization of Code Evolution(The Eurographics Association, 2005) Voinea, S. Lucian; Telea, Alexandru; Chaudron, Michel; Ken Brodlie and David Duke and Ken JoyThe source code of software systems changes many times during the system lifecycle. We study how developers can get insight in these changes in order to understand the project context and the product artifacts. For this we propose new techniques for code evolution representation and visualization interaction from a version-centric perspective. Central to our approach is a line-based display of the changing code, where each file version is shown as a column and the horizontal axis shows time. We propose a version centric layout of line representations and a constrained interaction scheme that makes it easy to navigate. Additionally, we describe a cushion based technique to enhance visualization with information about stable evolution areas. We demonstrate the usefulness of our approach on real- life data sets.Item Spatialized Transfer Functions(The Eurographics Association, 2005) Roettger, Stefan; Bauer, Michael; Stamminger, Marc; Ken Brodlie and David Duke and Ken JoyMulti-dimensional transfer functions are an efficient way to visualize features in scalar volume data produced by CT or MRI scanners. However, the optimal transfer function is difficult to find in general. We present an automatic yet powerful method for the automatic setup of multi-dimensional transfer functions by adding spatial information to the histogram of a volume. Using this information we can easily classify the histogram and derive a transfer function by assigning unique colors to each class of the histogram. Each feature can be selected interactively by pointing and clicking at the corresponding class in the transfer function. In order to render the classified volume with adequate quality we propose an extension of the wellknown pre-integration technique. Furthermore, we demonstrate the flexibility of our approach by giving examples for the imaging of segmented, diffusion-tensor and multi-modal data.Item The i-Disc - A Tool To Visualize and Explore Topic Maps(The Eurographics Association, 2005) Hofmann, Tobias; Wendler, Hendrik; Froehlich, Bernd; Ken Brodlie and David Duke and Ken JoyWe present the i-Disc, a tool to interactively visualize and explore medium sized topic maps. Topic maps contain two basic structures: the topic hierarchy and the associations between topics. Our system presents the topic hierarchy in a radial planar layout by encoding different hierarchy levels as separate rings. Associations are displayed on demand as three-dimensional arcs across the topic landscape. By separating these two topic map structures into different spatial dimensions, we untangle the often complex topic map graph. A perspective rendering of our layout generates a natural focus and context display. Our elementary circular design allows quick perception of the overall topic map structure while interactive navigation and exploration provide access to details on demand. The tool is implemented as a client-server application and integrates seamlessly into existing web based environments.Item High-Quality Rendering of Compressed Volume Data Formats(The Eurographics Association, 2005) Fout, Nathaniel; Akiba, Hiroshi; Ma, Kwan-Liu; Lefohn, Aaron E.; Kniss, Joe; Ken Brodlie and David Duke and Ken JoyRendering directly from packed or compressed volume data formats using graphics hardware has advantages in terms of memory consumption and bandwidth, but results in lower-quality images due to the prohibitive cost of performing interpolation and gradient-based shading on the reconstructed data. The problem with the existing method lies in its close coupling of decompression and interpolation. We demonstrate that deferred filtering overcomes this problem by using a two-pass decompression and rendering strategy. With this method interpolation and gradient calculations are very efficient, allowing high quality rendering directly from packed or compressed volume data. We evaluate the cost of creating interpolated, gradient-shaded renderings using traditional on-the-fly decompression and deferred filtering, and show that deferred filtering can provide up to twenty times speed-up for high quality rendering.Item High-Quality Volume Rendering with Resampling in the Frequency Domain(The Eurographics Association, 2005) Artner, Martin; Möller, Torsten; Viola, Ivan; Gröller, Meister E.; Ken Brodlie and David Duke and Ken JoyThis work introduces a volume rendering technique that is conceptually based on the shear-warp factorization. We propose to perform the shear transformation in the frequency domain. Unlike the standard shear-warp algorithm, we allow for arbitrary sampling distances along the viewing rays, independent from the view direction. The accurate scaling of the volume slices is achieved by using the zero padding interpolation property. Finally, a high quality gradient estimation scheme is presented which uses the derivative theorem of the Fourier transform. Experimental results show that the presented method outperforms established algorithms in the quality of the produced images. If the data is sampled above the Nyquist rate the presented method is capable of a perfect reconstruction of the original function.Item Spline-Based Gradient Filters For High-Quality Refraction Computations in Discrete Datasets(The Eurographics Association, 2005) Li, Shengying; Mueller, Klaus; Ken Brodlie and David Duke and Ken JoyBased on the finding that refraction imposes significantly higher demands onto gradient filters than illumination and shading, we evaluate the family of spline filters as a good alternative to the cubic filters, which so far have served as the gold standard of efficient yet high-quality interpolation filters in present visualization applications. Using a regular background texture to visualize the refractive properties of the volumetric object, we also describe an efficient scheme to achieve the effects of supersampling without incurring any extra raycasting overhead. Our results indicate that splines can be superior to the Catmull-Rom filter, with potentially less computational overhead, also offering a convenient means to adjust the extent of lowpassing and smoothing.Item Scalable, Robust Visualization of Very Large Trees(The Eurographics Association, 2005) Beermann, Dale; Munzner, Tamara; Humphreys, Greg; Ken Brodlie and David Duke and Ken JoyThe TreeJuxtaposer system [MGT*03] allowed visual comparison of large trees with guaranteed visibility of landmarks and Focus+Context navigation. While that system allowed exploration and comparison of larger datasets than previous work, it was limited to a single tree of 775,000 nodes by a large memory footprint. In this paper, we describe the theoretical limitations to TreeJuxtaposer's architecture that severely restrict its scalability. We provide two scalable, robust solutions to these limitations: TJC and TJC-Q. TJC is a system that supports browsing trees up to 15 million nodes by exploiting leading-edge graphics hardware while TJC-Q allows browsing trees up to 5 million nodes on commodity platforms. Both of these systems use a fast new algorithm for drawing and culling and benefit from a complete redesign of all data structures for more efficient memory usage and reduced preprocessing time.Item Analysis and Visualization of 3-C PIV Images from HART II using Image Processing Methods(The Eurographics Association, 2005) Ebling, Julia; Scheuermann, Gerik; Wall, Berend G. van der; Ken Brodlie and David Duke and Ken JoyIn this paper, three-component particle image velocimetry (3-C PIV) measurements within the wake of a helicopter rotor from the HART II test are analyzed. These PIV-images are quite a challenge as the noise due to the measurement method and the inherent turbulence of the flow can not be distinguished. Furthermore, features are often hidden by a mean flow, which is influenced by vortices and therefore not easy to determine. The authors present some image processing methods adapted to these vector fields for the computation of position, size, and direction of the vortices in this data. These methods are quite robust in terms of noise and independent of any mean flow and therefore appropriate for this analysis. The results of the analysis allow a more descriptive and intuitive visualization of the vortices.Item Interactive Methods for Exploring Particle Simulation Data(The Eurographics Association, 2005) Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.; Ken Brodlie and David Duke and Ken JoyIn this work, we visualize high-dimensional particle simulation data using a suite of scatterplot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatterplots as well as a novel oriented-disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify "interesting" sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.Item Interactive Visualization for Neck-Dissection Planning(The Eurographics Association, 2005) Krüger, Arno; Tietjen, Christian; Hintze, Jana; Preim, Bernhard; Hertel, Ilka; Strauß, Gero; Ken Brodlie and David Duke and Ken JoyIn this paper, we present visualization techniques for neck dissection planning. These interventions are carried out to remove lymph node metastasis in the neck region. 3d visualization is intended to explore and to quantify anatomic and pathologic structures and thus support decisions concerning the surgical strategy. For this purpose we developed and combined visualization and interaction techniques such as cutaway views, silhouettes and colorcoded distances. In addition, a standardized procedure for processing and visualization of the patient data is presented.Item Illustrative Context-Preserving Volume Rendering(The Eurographics Association, 2005) Bruckner, Stefan; Grimm, Sören; Kanitsar, Armin; Gröller, M. Eduard; Ken Brodlie and David Duke and Ken JoyIn volume rendering it is very difficult to simultaneously visualize interior and exterior structures while preserving clear shape cues. Very transparent transfer functions produce cluttered images with many overlapping structures, while clipping techniques completely remove possibly important context information. In this paper we present a new model for volume rendering, inspired by techniques from illustration that provides a means of interactively inspecting the interior of a volumetric data set in a feature-driven way which retains context information. The context-preserving volume rendering model uses a function of shading intensity, gradient magnitude, distance to the eye point, and previously accumulated opacity to selectively reduce the opacity in less important data regions. It is controlled by two user-specified parameters. This new method represents an alternative to conventional clipping techniques, shares their easy and intuitive user control, but does not suffer from the drawback of missing context information.Item Hardware-Accelerated Glyphs for Mono- and Dipoles in Molecular Dynamics Visualization(The Eurographics Association, 2005) Reina, Guido; Ertl, Thomas; Ken Brodlie and David Duke and Ken JoyWe present a novel visualization method for mono- and dipolar molecular simulations from thermodynamics that takes advantage of modern graphics hardware to interactively render specifically tailored glyphs. Our approach allows domain experts to visualize the results of molecular dynamics simulations with a higher number of particles than before and furthermore offers much better visual quality. We achieve this by transferring only visualization parameters to the GPU and by generating implicit surfaces directly in the fragment program. As a result, we can render up to 500.000 glyphs with about 10 fps displaying all the simulation results as geometrical properties that resemble the classical abstract representation used in this research area. Thus we enable researchers to visually assess the results of simulations of greater scale than before. We believe that the proposed method can be generalized to create other kinds of parametrized surfaces directly on graphics hardware to overcome the bandwidth bottleneck that exists between CPU and GPU.Item Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow(The Eurographics Association, 2005) Weiskopf, Daniel; Schafhitzel, Tobias; Ertl, Thomas; Ken Brodlie and David Duke and Ken JoyThis paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a novel 3D GPU-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. A real-time computation of gradients is employed to achieve volume illumination. Perception-guided volume shading methods are included, such as halos, cool/warm shading, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions.Item GVis: A Scalable Visualization Framework for Genomic Data(The Eurographics Association, 2005) Hong, Jin; Jeong, Dong Hyun; Shaw, Chris D; Ribarsky, William; Borodovsky, Mark; Song, Chang; Ken Brodlie and David Duke and Ken JoyThis paper describes a framework we have developed for the visual analysis of large-scale phylogeny hierarchies populated with the genomic data of various organisms. This framework allows the user to quickly browse the phylogeny hierarchy of organisms from the highest level down to the level of an individual genome for the desired organism of interest. Based on this framework, the user can initiate gene-finding and gene-matching analyses and view the resulting annotated coding potential graphs in the same multi-scale visualization framework, permitting correlative analysis and further investigation. This paper introduces our framework and describes the data structures and algorithms that support it.Item Localized Flow Analysis of 2D and 3D Vector Fields(The Eurographics Association, 2005) Wiebel, Alexander; Garth, Christoph; Scheuermann, Gerik; Ken Brodlie and David Duke and Ken JoyIn this paper we present an approach to the analysis of the contribution of a small subregion in a dataset to the global flow. To this purpose, we subtract the potential flow that is induced by the boundary of the sub-domain from the original flow. Since the potential flow is free of both divergence and rotation, the localized flow field retains the original features. In contrast to similar approaches, by making explicit use of the boundary flow of the subregion, we manage to isolate the region-specific flow that contains exactly the local contribution of the considered subdomain to the global flow. In the remainder of the paper, we describe an implementation on unstructured grids in both two and three dimensions. We discuss the application of several widely used feature extraction methods on the localized flow, with an emphasis on topological schemes.Item ArcTrees: Visualizing Relations in Hierarchical Data(The Eurographics Association, 2005) Neumann, Petra; Schlechtweg, Dr. Stefan; Carpendale, Sheelagh; Ken Brodlie and David Duke and Ken JoyIn this paper we present, ARCTREES, a novel way of visualizing hierarchical and non-hierarchical relations within one interactive visualization. Such a visualization is challenging because it must display hierarchical information in a way that the user can keep his or her mental map of the data set and include relational information without causing misinterpretation. We propose a hierarchical view derived from traditional Treemaps and augment this view with an arc diagram to depict relations. In addition, we present interaction methods that allow the exploration of the data set using Focus+Context techniques for navigation. The development was motivated by a need for understanding relations in structured documents but it is also useful in many other application domains such as project management and calendars.Item Vector Field Analysis and Visualization through Variational Clustering(The Eurographics Association, 2005) McKenzie, Alexander; Lombeyda, Santiago V.; Desbrun, Mathieu; Ken Brodlie and David Duke and Ken JoyScientific computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector fields, departing from accustomed processing algorithms by casting vector field simplification as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector "proxies" to minimize the distortion error of our simplification by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the bene fits of such tools through visualization experiments of three-dimensional vector fields.Item Extending and Simplifying Transfer Function Design in Medical Volume Rendering Using Local Histograms(The Eurographics Association, 2005) Lundström, Claes; Ljung, Patric; Ynnerman, Anders; Ken Brodlie and David Duke and Ken JoyDirect Volume Rendering (DVR) is known to be of diagnostic value in the analysis of medical data sets. However, its deployment in everyday clinical use has so far been limited. Two major challenges are that the current methods for Transfer Function (TF) construction are too complex and that the tissue separation abilities of the TF need to be extended. In this paper we propose the use of histogram analysis in local neighborhoods to address both these conflicting problems. To reduce TF construction difficulty, we introduce Partial Range Histograms in an automatic tissue detection scheme, which in connection with Adaptive Trapezoids enable efficient TF design. To separate tissues with overlapping intensity ranges, we propose a fuzzy classification based on local histograms as a second TF dimension. This increases the power of the TF, while retaining intuitive presentation and interaction.