Volume 34 (2015)
Permanent URI for this community
Browse
Browsing Volume 34 (2015) by Issue Date
Now showing 1 - 20 of 244
Results Per Page
Sort Options
Item Real-Time Subspace Integration for Example-Based Elastic Material(The Eurographics Association and John Wiley & Sons Ltd., 2015) Zhang, Wenjing; Zheng, Jianmin; Thalmann, Nadia Magnenat; Olga Sorkine-Hornung and Michael WimmerExample-based material allows simulating complex material behaviors in an art-directed way. This paper presents a method for fast subspace integration for example-based elastic material, which is suitable for real-time simulation in computer graphics. At the core of the method is the formulation of a new potential using example-based Green strain tensors. By using this potential, the deformation can be attracted towards the example-based deformation feature space, the example weights can be explicitly obtained and the internal force can be decomposed into the conventional one and an additional one induced by the examples. The real-time subspace integration is then developed with subspace integration costs independent of geometric complexity, and both the reduced conventional internal force and additional one being cubic polynomials in reduced coordinates. Experiments demonstrate that our method can achieve real-time simulation while providing comparable quality with the prior art.Item Map-based Visualizations Increase Recall Accuracy of Data(The Eurographics Association and John Wiley & Sons Ltd., 2015) Saket, Bahador; Scheidegger, Carlos; Kobourov, Stephen G.; Börner, Katy; H. Carr, K.-L. Ma, and G. SantucciWe investigate the memorability of data represented in two different visualization designs. In contrast to recent studies that examine which types of visual information make visualizations memorable, we examine the effect of different visualizations on time and accuracy of recall of the displayed data, minutes and days after interaction with the visualizations. In particular, we describe the results of an evaluation comparing the memorability of two different visualizations of the same relational data: node-link diagrams and map-based visualization. We find significant differences in the accuracy of the tasks performed, and these differences persist days after the original exposure to the visualizations. Specifically, participants in the study recalled the data better when exposed to map-based visualizations as opposed to node-link diagrams. We discuss the scope of the study and its limitations, possible implications, and future directions.Item Trivariate Biharmonic B‐Splines(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Hou, Fei; Qin, Hong; Hao, Aimin; Deussen, Oliver and Zhang, Hao (Richard).In this paper, we formulate a novel trivariate biharmonic B‐spline defined over bounded volumetric domain. The properties of bi‐Laplacian have been well investigated, but the straightforward generalization from bivariate case to trivariate one gives rise to unsatisfactory discretization, due to the dramatically uneven distribution of neighbouring knots in 3D. To ameliorate, our original idea is to extend the bivariate biharmonic B‐spline to the trivariate one with novel formulations based on quadratic programming, approximating the properties of localization and partition of unity. And we design a novel discrete biharmonic operator which is optimized more robustly for a specific set of functions for unevenly sampled knots compared with previous methods. Our experiments demonstrate that our 3D discrete biharmonic operators are robust for unevenly distributed knots and illustrate that our algorithm is superior to previous algorithms.Item Robust Statistical Pixel Estimation(The Eurographics Association and John Wiley & Sons Ltd., 2015) Jung, Jin Woo; Meyer, Gary; DeLong, Ralph; Olga Sorkine-Hornung and Michael WimmerRobust statistical methods are employed to reduce the noise in Monte Carlo ray tracing. Through the use of resampling, the sample mean distribution is determined for each pixel. Because this distribution is uni-modal and normal for a large sample size, robust estimates converge to the true mean of the pixel values. Compared to existing methods, less additional storage is required at each pixel because the sample mean distribution can be distilled down to a compact size, and fewer computations are necessary because the robust estimation process is sampling independent and needs a small input size to compute pixel values. The robust statistical pixel estimators are not only resistant to impulse noise, but they also remove general noise from fat-tailed distributions. A substantial speedup in rendering can therefore be achieved by reducing the number of samples required for a desired image quality. The effectiveness of the proposed approach is demonstrated for path tracing simulations.Item Can Bi-cubic Surfaces be Class A?(The Eurographics Association and John Wiley & Sons Ltd., 2015) Karciauskas, Kestutis; Peters, Jörg; Mirela Ben-Chen and Ligang LiuClass A surface' is a term in the automotive design industry, describing spline surfaces with aesthetic, non- oscillating highlight lines. Tensor-product B-splines of degree bi-3 (bicubic) are routinely used to generate smooth design surfaces and are often the de facto standard for downstream processing. To bridge the gap, this paper explores and gives a concrete suggestion, how to achieve good highlight line distributions for irregular bi-3 tensor-product patch layout by allowing, along some seams, a slight mismatch of normals below the industry- accepted tolerance of one tenth of a degree. Near the irregularities, the solution can be viewed as transforming a higher-degree, high-quality formally smooth surface into a bi-3 spline surface with few pieces, sacrificing formal smoothness but qualitatively retaining the shape.Item Composition-Aware Scene Optimization for Product Images(The Eurographics Association and John Wiley & Sons Ltd., 2015) Liu, Tianqiang; McCann, Jim; Li, Wilmot; Funkhouser, Thomas; Olga Sorkine-Hornung and Michael WimmerIncreasingly, companies are creating product advertisements and catalog images using computer renderings of 3D scenes. A common goal for these companies is to create aesthetically appealing compositions that highlight objects of interest within the context of a scene. Unfortunately, this goal is challenging, not only due to the need to balance the trade-off among aesthetic principles and design constraints, but also because of the huge search space induced by possible camera parameters, object placement, material choices, etc. Previous methods have investigated only optimization of camera parameters. In this paper, we develop a tool that starts from an initial scene description and a set of high-level constraints provided by a stylist and then automatically generates an optimized scene whose 2D composition is improved. It does so by locally adjusting the 3D object transformations, surface materials, and camera parameters. The value of this tool is demonstrated in a variety of applications motivated by product catalogs, including rough layout refinement, detail image creation, home planning, cultural customization, and text inlay placement. Results of a perceptual study indicate that our system produces images preferable for product advertisement compared to a more traditional camera-only optimization.Item Physically Meaningful Rendering using Tristimulus Colours(The Eurographics Association and John Wiley & Sons Ltd., 2015) Meng, Johannes; Simon, Florian; Hanika, Johannes; Dachsbacher, Carsten; Jaakko Lehtinen and Derek NowrouzezahraiIn photorealistic image synthesis the radiative transfer equation is often not solved by simulating every wavelength of light, but instead by computing tristimulus transport, for instance using sRGB primaries as a basis. This choice is convenient, because input texture data is usually stored in RGB colour spaces. However, there are problems with this approach which are often overlooked or ignored. By comparing to spectral reference renderings, we show how rendering in tristimulus colour spaces introduces colour shifts in indirect light, violation of energy conservation, and unexpected behaviour in participating media. Furthermore, we introduce a fast method to compute spectra from almost any given XYZ input colour. It creates spectra that match the input colour precisely. Additionally, like in natural reflectance spectra, their energy is smoothly distributed over wide wavelength bands. This method is both useful to upsample RGB input data when spectral transport is used and as an intermediate step for corrected tristimulus-based transport. Finally, we show how energy conservation can be enforced in RGB by mapping colours to valid reflectances.Item Dispersion-based Color Projection using Masked Prisms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Hostettler, Rafael; Habel, Ralf; Gross, Markus; Jarosz, Wojciech; Stam, Jos and Mitra, Niloy J. and Xu, KunWe present a method for projecting arbitrary color images using a white light source and an optical device with no colored components - consisting solely of one or two prisms and two transparent masks. When illuminated, the first mask creates structured white light that is then dispersed in the prism and attenuated by the second mask to create the color projection. We derive analytical expressions for the mask parameters from the physical components and validate our approach both in simulation and also demonstrate it on a wide variety of images using two different physical setups (one consisting of two inexpensive triangular prisms, and the other using a single rhombic prism). Furthermore, we show that optimizing the masks simultaneously enables obfuscating the image content, and provides a tradeoff between increased light throughput (by up to a factor of three) and maximum color saturation.Item Interactive Sketch‐Driven Image Synthesis(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Turmukhambetov, Daniyar; Campbell, Neill D.F.; Goldman, Dan B; Kautz, Jan; Deussen, Oliver and Zhang, Hao (Richard)We present an interactive system for composing realistic images of an object under arbitrary pose and appearance specified by sketching. Our system draws inspiration from a traditional illustration workflow: The user first sketches rough ‘masses’ of the object, as ellipses, to define an initial abstract pose that can then be refined with more detailed contours as desired. The system is made robust to partial or inaccurate sketches using a reduced‐dimensionality model of pose space learnt from a labelled collection of photos. Throughout the composition process, interactive visual feedback is provided to guide the user. Finally, the user's partial or complete sketch, complemented with appearance requirements, is used to constrain the automatic synthesis of a novel, high‐quality, realistic image.We present an interactive system for composing realistic images of an object under arbitrary pose and appearance specified by sketching. Our system draws inspiration from a traditional illustration workflow: The user first sketches rough ‘masses’ of the object, as ellipses, to define an initial abstract pose that can then be refined with more detailed contours as desired. The system is made robust to partial or inaccurate sketches using a reduced‐dimensionality model of pose space learnt from a labelled collection of photos. Throughout the composition process, interactive visual feedback is provided to guide the user.Item T-SAH: Animation Optimized Bounding Volume Hierarchies(The Eurographics Association and John Wiley & Sons Ltd., 2015) Bittner, Jirí; Meister, Daniel; Olga Sorkine-Hornung and Michael WimmerWe propose a method for creating a bounding volume hierarchy (BVH) that is optimized for all frames of a given animated scene. The method is based on a novel extension of surface area heuristic to temporal domain (T-SAH). We perform iterative BVH optimization using T-SAH and create a single BVH accounting for scene geometry distribution at different frames of the animation. Having a single optimized BVH for the whole animation makes our method extremely easy to integrate to any application using BVHs, limiting the per-frame overhead only to refitting the bounding volumes.We evaluated the T-SAH optimized BVHs in the scope of real-time GPU ray tracing. We demonstrate, that our method can handle even highly complex inputs with large deformations and significant topology changes. The results show, that in a vast majority of tested scenes our method provides significantly better run-time performance than traditional SAH and also better performance than GPU based per-frame BVH rebuild.Item AppFusion: Interactive Appearance Acquisition Using a Kinect Sensor(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Wu, Hongzhi; Zhou, Kun; Deussen, Oliver and Zhang, Hao (Richard)We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity of the spatially varying materials are rapidly computed in an inverse rendering framework, using data from the Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system.We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously.Item Issue Information(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Deussen, Oliver and Zhang, Hao (Richard)Item Order-Independent Transparency for Programmable Deferred Shading Pipelines(The Eurographics Association and John Wiley & Sons Ltd., 2015) Schollmeyer, Andre; Babanin, Andrey; Froehlich, Bernd; Stam, Jos and Mitra, Niloy J. and Xu, KunIn this paper, we present a flexible and efficient approach for the integration of order-independent transparency into a deferred shading pipeline. The intermediate buffers for storing fragments to be shaded are extended with a dynamic and memory-efficient storage for transparent fragments. The transparency of an object is not fixed and remains programmable until fragment processing, which allows for the implementation of advanced materials effects, interaction techniques or adaptive fade-outs. Traversing costs for shading the transparent fragments are greatly reduced by introducing a tile-based light-culling pass. During deferred shading, opaque and transparent fragments are shaded and composited in front-to-back order using the retrieved lighting information and a physically-based shading model. In addition, we discuss various configurations of the system and further enhancements. Our results show that the system performs at interactive frame rates even for complex scenarios.Item Relativistic Effects for Time‐Resolved Light Transport(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Jarabo, Adrian; Masia, Belen; Velten, Andreas; Barsi, Christopher; Raskar, Ramesh; Gutierrez, Diego; Deussen, Oliver and Zhang, Hao (Richard)We present a real‐time framework which allows interactive visualization of relativistic effects for time‐resolved light transport. We leverage data from two different sources: real‐world data acquired with an effective exposure time of less than 2 picoseconds, using an ultra‐fast imaging technique termed , and a transient renderer based on ray‐tracing. We explore the effects of time dilation, light aberration, frequency shift and radiance accumulation by modifying existing models of these relativistic effects to take into account the time‐resolved nature of light propagation. Unlike previous works, we do not impose limiting constraints in the visualization, allowing the virtual camera to explore freely a reconstructed 3D scene depicting dynamic illumination. Moreover, we consider not only linear motion, but also acceleration and rotation of the camera. We further introduce, for the first time, a pinhole camera model into our relativistic rendering framework, and account for subsequent changes in focal length and field of view as the camera moves through the scene..Item High Reliefs from 3D Scenes(The Eurographics Association and John Wiley & Sons Ltd., 2015) Arpa, Sami; Süsstrunk, Sabine; Hersch, Roger D.; Olga Sorkine-Hornung and Michael WimmerWe present a method for synthesizing high reliefs, a sculpting technique that attaches 3D objects onto a 2D surface within a limited depth range. The main challenges are the preservation of distinct scene parts by preserving depth discontinuities, the fine details of the shape, and the overall continuity of the scene. Bas relief depth compression methods such as gradient compression and depth range compression are not applicable for high relief production. Instead, our method is based on differential coordinates to bring scene elements to the relief plane while preserving depth discontinuities and surface details of the scene. We select a user-defined number of attenuation points within the scene, attenuate these points towards the relief plane and recompute the positions of all scene elements by preserving the differential coordinates. Finally, if the desired depth range is not achieved we apply a range compression. High relief synthesis is semi-automatic and can be controlled by user-defined parameters to adjust the depth range, as well as the placement of the scene elements with respect to the relief plane.Item Perfect Laplacians for Polygon Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2015) Herholz, Philipp; Kyprianidis, Jan Eric; Alexa, Marc; Mirela Ben-Chen and Ligang LiuA discrete Laplace-Beltrami operator is called perfect if it possesses all the important properties of its smooth counterpart. It is known which triangle meshes admit perfect Laplace operators and how to fix any other mesh by changing the combinatorics. We extend the characterization of meshes that admit perfect Laplacians to general polygon meshes. More importantly, we provide an algorithm that computes a perfect Laplace operator for any polygon mesh without changing the combinatorics, although, possibly changing the embedding. We evaluate this algorithm and demonstrate it at applications.Item Consistent Scene Editing by Progressive Difference Images(The Eurographics Association and John Wiley & Sons Ltd., 2015) Günther, Tobias; Grosch, Thorsten; Jaakko Lehtinen and Derek NowrouzezahraiEven though much research was dedicated to the acceleration of consistent, progressive light transport simulations, the computation of fully converged images is still very time-consuming. This is problematic, as for the practical use in production pipelines, the rapid editing of lighting effects is important. While previous approaches restart the simulation with every scene manipulation, we make use of the coherence between frames before and after a modification in order to accelerate convergence of the context that remained similar. This is especially beneficial if a scene is edited that has already been converging for a long time, because much of the previous result can be reused, e.g., sharp caustics cast or received by the unedited scene parts. In its essence, our method performs the scene modification stochastically by predicting and accounting for the difference image. In addition, we employ two heuristics to handle cases in which stochastic removal is likely to lead to strong noise. Typical scene interactions can be broken down into object adding and removal, material substitution, camera movement and light editing, which we all examine in a number of test scenes both qualitatively and quantitatively. As we focus on caustics, we chose stochastic progressive photon mapping as the underlying light transport algorithm. Further, we show preliminary results of bidirectional path tracing and vertex connection and merging.Item Interactive Visual Analysis for Vehicle Detector Data(The Eurographics Association and John Wiley & Sons Ltd., 2015) Chen, Yi-Cheng; Wang, Yu-Shuen; Lin, Wen-Chieh; Huang, Wei-Xiang; Lin, I-Chen; H. Carr, K.-L. Ma, and G. SantucciVisualization of vehicle detection (VD) data is essential because the data play an important role in traffic control and policy development. Most previous works focus on visualizing trajectories obtained from global positioning system (GPS), which are detailed but less representative. In contrast, VD data report the traffic statistic at each sensing site during a time span, including speed, flow, and occupancy of each lane, which contain comprehensive traffic information for analysis. In this work, we visualize three-year VD data of freeways in Taiwan. The visualization depicts the traffic situation at a site over time using a color-coded chart that extends from left to right over time. The charts are vertically stacked and horizontally aligned according to VD's located mileage and data time, respectively, to provide global insight. Our system allows semantic zoom, which changes the chart appearance in a continuous manner, to enable macro- and micro- scopic visualizations. Analysts can explore events that span an area with different sizes and that persist a time span with various lengths. To ensure the feasibility of our visualization, before the system design, we conducted a study with experts who work in the national freeway bureau and the institute of transportation of Taiwan. We also showed our results to the experts after the prototype system was built. The feedback shows that our VD data visualization is helpful to traffic control and policy development.Item Shapes In a Box: Disassembling 3D Objects for Efficient Packing and Fabrication(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Attene, Marco; Deussen, Oliver and Zhang, Hao (Richard)Modern 3D printing technologies and the upcoming mass‐customization paradigm call for efficient methods to produce and distribute arbitrarily shaped 3D objects. This paper introduces an original algorithm to split a 3D model in parts that can be efficiently packed within a box, with the objective of reassembling them after delivery. The first step consists in the creation of a hierarchy of possible parts that can be tightly packed within their minimum bounding boxes. In a second step, the hierarchy is exploited to extract the (single) segmentation whose parts can be most tightly packed. The fact that shape packing is an NP‐complete problem justifies the use of heuristics and approximated solutions whose efficacy and efficiency must be assessed. Extensive experimentation demonstrates that our algorithm produces satisfactory results for arbitrarily shaped objects while being comparable to methods when specific shapes are considered.Modern 3D printing technologies and the upcoming mass‐customization paradigm call for efficient methods to produce and distribute arbitrarily shaped 3D objects. This paper introduces an original algorithm to split a 3D model in parts that can be efficiently packed within a box, with the objective of reassembling them after delivery. The first step consists in the creation of a hierarchy of possible parts that can be tightly packed within their minimum bounding boxes. In a second step, the hierarchy is exploited to extract the (single) segmentation whose parts can be most tightly packed. The fact that shape packing is an NP‐complete problem justifies the use of heuristics and approximated solutions whose efficacy and efficiency must be assessed.Item Skeleton-Intrinsic Symmetrization of Shapes(The Eurographics Association and John Wiley & Sons Ltd., 2015) Zheng, Qian; Hao, Zhuming; Huang, Hui; Xu, Kai; Zhang, Hao; Cohen-Or, Daniel; Chen, Baoquan; Olga Sorkine-Hornung and Michael WimmerEnhancing the self-symmetry of a shape is of fundamental aesthetic virtue. In this paper, we are interested in recovering the aesthetics of intrinsic reflection symmetries, where an asymmetric shape is symmetrized while keeping its general pose and perceived dynamics. The key challenge to intrinsic symmetrization is that the input shape has only approximate reflection symmetries, possibly far from perfect. The main premise of our work is that curve skeletons provide a concise and effective shape abstraction for analyzing approximate intrinsic symmetries as well as symmetrization. By measuring intrinsic distances over a curve skeleton for symmetry analysis, symmetrizing the skeleton, and then propagating the symmetrization from skeleton to shape, our approach to shape symmetrization is skeleton-intrinsic. Specifically, given an input shape and an extracted curve skeleton, we introduce the notion of a backbone as the path in the skeleton graph about which a self-matching of the input shape is optimal. We define an objective function for the reflective self-matching and develop an algorithm based on genetic programming to solve the global search problem for the backbone. The extracted backbone then guides the symmetrization of the skeleton, which in turn, guides the symmetrization of the whole shape. We show numerous intrinsic symmetrization results of hand drawn sketches and artist-modeled or reconstructed 3D shapes, as well as several applications of skeleton-intrinsic symmetrization of shapes.