36-Issue 8
Permanent URI for this collection
Browse
Browsing 36-Issue 8 by Issue Date
Now showing 1 - 20 of 48
Results Per Page
Sort Options
Item Issue Information(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Chen, Min and Zhang, Hao (Richard)Item Flow‐Based Temporal Selection for Interactive Volume Visualization(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Frey, S.; Ertl, T.; Chen, Min and Zhang, Hao (Richard)We present an approach to adaptively select time steps from time‐dependent volume data sets for an integrated and comprehensive visualization. This reduced set of time steps not only saves cost, but also allows to show both the spatial structure and temporal development in one combined rendering. Our selection optimizes the coverage of the complete data on the basis of a minimum‐cost flow‐based technique to determine meaningful distances between time steps. As both optimal solutions of the involved transport and selection problem are prohibitively expensive, we present new approaches that are significantly faster with only minor deviations. We further propose an adaptive scheme for the progressive incorporation of new time steps. An interactive volume raycaster produces an integrated rendering of the selected time steps, and their computed differences are visualized in a dedicated chart to provide additional temporal similarity information. We illustrate and discuss the utility of our approach by means of different data sets from measurements and simulation.We present an approach to adaptively select time steps from time‐dependent volume data sets for an integrated and comprehensive visualization. This reduced set of time steps not only saves cost, but also allows to show both the spatial structure and temporal development in one combined rendering. Our selection optimizes the coverage of the complete data on the basis of a minimum‐cost flow‐based technique to determine meaningful distances between time steps. As both optimal solutions of the involved transport and selection problem are prohibitively expensive, we present new approaches that are significantly faster with only minor deviations. We further propose an adaptive scheme for the progressive incorporation of new time steps.Item Point Cloud Denoising via Moving RPCA(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Mattei, E.; Castrodad, A.; Chen, Min and Zhang, Hao (Richard)We present an algorithm for the restoration of noisy point cloud data, termed Moving Robust Principal Components Analysis (MRPCA). We model the point cloud as a collection of overlapping two‐dimensional subspaces, and propose a model that encourages collaboration between overlapping neighbourhoods. Similar to state‐of‐the‐art sparse modelling‐based image denoising, the estimated point positions are computed by local averaging. In addition, the proposed approach models grossly corrupted observations explicitly, does not require oriented normals, and takes into account both local and global structure. Sharp features are preserved via a weighted ℓ minimization, where the weights measure the similarity between normal vectors in a local neighbourhood. The proposed algorithm is compared against existing point cloud denoising methods, obtaining competitive results.We present an algorithm for the restoration of noisy point cloud data, termed Moving Robust Principal Components Analysis (MRPCA). We model the point cloud as a collection of overlapping two‐dimensional subspaces, and propose a model that encourages collaboration between overlapping neighbourhoods. Similar to state‐of‐the‐art sparse modelling‐based image denoising, the estimated point positions are computed by local averaging. In addition, the proposed approach models grossly corrupted observations explicitly, does not require oriented normals, and takes into account both local and global structure. Sharp features are preserved via a weighted ℓ minimization, where the weights measure the similarity between normal vectors in a local neighbourhood. The proposed algorithm is compared against existing point cloud denoising methods, obtaining competitive results.Item Real‐Time Oil Painting on Mobile Hardware(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Stuyck, Tuur; Da, Fang; Hadap, Sunil; Dutré, Philip; Chen, Min and Zhang, Hao (Richard)This paper presents a realistic digital oil painting system, specifically targeted at the real‐time performance on highly resource‐constrained portable hardware such as tablets and iPads. To effectively use the limited computing power, we develop an efficient adaptation of the shallow water equations that models all the characteristic properties of oil paint. The pigments are stored in a multi‐layered structure to model the peculiar nature of pigment mixing in oil paint. The user experience ranges from thick shape‐retaining strokes to runny diluted paint that reacts naturally to the gravity set by tablet orientation. Finally, the paint is rendered in real time using a combination of carefully chosen efficient rendering techniques. The virtual lighting adapts to the tablet orientation, or alternatively, the front‐facing camera captures the lighting environment, which leads to a truly immersive user experience. Our proposed features are evaluated via a user study. In our experience, our system enables artists to quickly try out ideas and compositions anywhere when inspiration strikes, in a truly ubiquitous way. They do not need to carry expensive and messy oil paint supplies.: This paper presents a realistic digital oil painting system, specifically targeted at the real‐time performance on highly resource‐constrained portable hardware such as tablets and iPads. To effectively use the limited computing power, we develop an efficient adaptation of the shallow water equations that models all the characteristic properties of oil paint. The pigments are stored in a multi‐layered structure to model the peculiar nature of pigment mixing in oil paint. The user experience ranges from thick shape‐retaining strokes to runny diluted paint that reacts naturally to the gravity set by tablet orientation. Finally, the paint is rendered in real time using a combination of carefully chosen efficient rendering techniques.Item Approximating Planar Conformal Maps Using Regular Polygonal Meshes(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Chen, Renjie; Gotsman, Craig; Chen, Min and Zhang, Hao (Richard)Continuous conformal maps are typically approximated numerically using a triangle mesh which discretizes the plane. Computing a conformal map subject to user‐provided constraints then reduces to a sparse linear system, minimizing a quadratic ‘conformal energy’. We address the more general case of non‐triangular elements, and provide a complete analysis of the case where the plane is discretized using a mesh of regular polygons, e.g. equilateral triangles, squares and hexagons, whose interiors are mapped using barycentric coordinate functions. We demonstrate experimentally that faster convergence to continuous conformal maps may be obtained this way. We provide a formulation of the problem and its solution using complex number algebra, significantly simplifying the notation. We examine a number of common barycentric coordinate functions and demonstrate that superior approximation to harmonic coordinates of a polygon are achieved by the Moving Least Squares coordinates. We also provide a simple iterative algorithm to invert barycentric maps of regular polygon meshes, allowing to apply them in practical applications, e.g. for texture mapping.Continuous conformal maps are typically approximated numerically using a triangle mesh which discretizes the plane. Computing a conformal map subject to user‐provided constraints then reduces to a sparse linear system, minimizing a quadratic ‘conformal energy’. We address the more general case of non‐triangular elements, and provide a complete analysis of the case where the plane is discretized using a mesh of regular polygons, e.g. equilateral triangles, squares and hexagons, whose interiors are mapped using barycentric coordinate functions. We demonstrate experimentally that faster convergence to continuous conformal maps may be obtained this way. We examine a number of common barycentric coordinate functions and demonstrate that superior approximation to harmonic coordinates of a polygon are achieved by the Moving Least Squares coordinates. We also provide a simple iterative algorithm to invert barycentric maps of regular polygon meshes, allowing to apply them in practical applications, e.g. for texture mapping.Item Efficient and Reliable Self‐Collision Culling Using Unprojected Normal Cones(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Wang, Tongtong; Liu, Zhihua; Tang, Min; Tong, Ruofeng; Manocha, Dinesh; Chen, Min and Zhang, Hao (Richard)We present an efficient and accurate algorithm for self‐collision detection in deformable models. Our approach can perform discrete and continuous collision queries on triangulated meshes. We present a simple and linear time algorithm to perform the normal cone test using the unprojected 3D vertices, which reduces to a sequence point‐plane classification tests. Moreover, we present a hierarchical traversal scheme that can significantly reduce the number of normal cone tests and the memory overhead using front‐based normal cone culling. The overall algorithm can reliably detect all (self) collisions in models composed of hundreds of thousands of triangles. We observe considerable performance improvement over prior continuous collision detection algorithms.We present an efficient and accurate algorithm for self‐collision detection in deformable models. Our approach can perform discrete and continuous collision queries on triangulated meshes. We present a simple and linear time algorithm to perform the normal cone test using the unprojected 3D vertices, which reduces to a sequence point‐plane classification tests. Moreover, we present a hierarchical traversal scheme that can significantly reduce the number of normal cone tests and the memory overhead using front‐based normal cone culling. The overall algorithm can reliably detect all (self) collisions in models composed of hundreds of thousands of triangles. We observe considerable performance improvement over prior continuous collision detection algorithms.Item Symmetry‐Aware Mesh Segmentation into Uniform Overlapping Patches(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Dessein, A.; Smith, W. A. P.; Wilson, R. C.; Hancock, E. R.; Chen, Min and Zhang, Hao (Richard)We present intrinsic methods to address the fundamental problem of segmenting a mesh into a specified number of patches with a uniform size and a controllable overlap. Although never addressed in the literature, such a segmentation is useful for a wide range of processing operations where patches represent local regions and overlaps regularize solutions in neighbour patches. Further, we propose a symmetry‐aware distance measure and symmetric modification to furthest‐point sampling, so that our methods can operate on semantically symmetric meshes. We introduce quantitative measures of patch size uniformity and symmetry, and show that our segmentation outperforms state‐of‐the‐art alternatives in experiments on a well‐known dataset. We also use our segmentation in illustrative applications to texture stitching and synthesis where we improve results over state‐of‐the‐art approaches.We present intrinsic methods to address the fundamental problem of segmenting a mesh into a specified number of patches with a uniform size and a controllable overlap. Although never addressed in the literature, such a segmentation is useful for a wide range of processing operations where patches represent local regions and overlaps regularize solutions in neighbour patches. Further, we propose a symmetry‐aware distance measure and symmetric modification to furthest‐point sampling, so that our methods can operate on semantically symmetric meshes. We introduce quantitative measures of patch size uniformity and symmetry, and show that our segmentation outperforms state‐of‐the‐art alternatives in experiments on a well‐known dataset.Item SketchSoup: Exploratory Ideation Using Design Sketches(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Arora, R.; Darolia, I.; Namboodiri, V. P.; Singh, K.; Bousseau, A.; Chen, Min and Zhang, Hao (Richard)A hallmark of early stage design is a number of quick‐and‐dirty sketches capturing design inspirations, model variations and alternate viewpoints of a visual concept. We present SketchSoup, a workflow that allows designers to explore the design space induced by such sketches. We take an unstructured collection of drawings as input, along with a small number of user‐provided correspondences as input. We register them using a multi‐image matching algorithm, and present them as a 2D interpolation space. By morphing sketches in this space, our approach produces plausible visualizations of shape and viewpoint variations despite the presence of sketch distortions that would prevent standard camera calibration and 3D reconstruction. In addition, our interpolated sketches can serve as inspiration for further drawings, which feed back into the design space as additional image inputs. SketchSoup thus fills a significant gap in the early ideation stage of conceptual design by allowing designers to make better informed choices before proceeding to more expensive 3D modelling and prototyping. From a technical standpoint, we describe an end‐to‐end system that judiciously combines and adapts various image processing techniques to the drawing domain—where the images are dominated not by colour, shading and texture, but by sketchy stroke contours.SketchSoup takes an unstructured set of sketches as input, along with a small number of correspondences (shown as red dots) (a), registers the sketches using an iterative match‐warp algorithm harnessing matching consistency across images (b, top) and embeds the sketches into a 2D interpolation space based on their shape differences (b, bottom). Users can explore the interpolation space to generate novel sketches, which are generated by warping existing sketches into alignment(c, top), followed by spatially non‐uniform blending (c, bottom). These interpolated sketches can serve as underlay to inspire new concepts (d), which can in turn be integrated into the interpolation space to iteratively generate more designs (e). (Some sketches courtesy Mike Serafin.)A hallmark of early stage design is a number of quick‐and‐dirty sketches capturing design inspirations, model variations and alternate viewpoints of a visual concept. We present SketchSoup, a workflow that allows designers to explore the design space induced by such sketches. We take an unstructured collection of drawings as input, along with a small number of user‐provided correspondences as input. We register them using a multi‐image matching algorithm, and present them as a 2D interpolation space. By morphing sketches in this space, our approach produces plausible visualizations of shape and viewpoint variations despite the presence of sketch distortions that would prevent standard camera calibration and 3D reconstruction.Item Building a Large Database of Facial Movements for Deformation Model‐Based 3D Face Tracking(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Sibbing, Dominik; Kobbelt, Leif; Chen, Min and Zhang, Hao (Richard)We introduce a new markerless 3D face tracking approach for 2D videos captured by a single consumer grade camera. Our approach takes detected 2D facial features as input and matches them with projections of 3D features of a deformable model to determine its pose and shape. To make the tracking and reconstruction more robust we add a smoothness prior for pose and deformation changes of the faces. Our major contribution lies in the formulation of the deformation prior which we derive from a large database of facial animations showing different (dynamic) facial expressions of a fairly large number of subjects. We split these animation sequences into snippets of fixed length which we use to predict the facial motion based on previous frames. In order to keep the deformation model compact and independent from the individual physiognomy, we represent it by deformation gradients (instead of vertex positions) and apply a principal component analysis in deformation gradient space to extract the major modes of facial deformation. Since the facial deformation is optimized during tracking, it is particularly easy to apply them to other physiognomies and thereby re‐target the facial expressions. We demonstrate the effectiveness of our technique on a number of examples.We introduce a new markerless 3D face tracking approach for 2D videos captured by a single consumer grade camera. Our approach takes detected 2D facial features as input and matches them with projections of 3D features of a deformable model to determine its pose and shape. To make the tracking and reconstruction more robust we add a smoothness prior for pose and deformation changes of the faces. Our major contribution lies in the formulation of the deformation prior which we derive from a large database of facial animations showing different (dynamic) facial expressions of a fairly large number of subjects. We split these animation sequences into snippets of fixed length which we use to predict the facial motion based on previous frames.Item Hierarchical Bucket Queuing for Fine‐Grained Priority Scheduling on the GPU(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Kerbl, Bernhard; Kenzel, Michael; Schmalstieg, Dieter; Seidel, Hans‐Peter; Steinberger, Markus; Chen, Min and Zhang, Hao (Richard)While the modern graphics processing unit (GPU) offers massive parallel compute power, the ability to influence the scheduling of these immense resources is severely limited. Therefore, the GPU is widely considered to be only suitable as an externally controlled co‐processor for homogeneous workloads which greatly restricts the potential applications of GPU computing. To address this issue, we present a new method to achieve fine‐grained priority scheduling on the GPU: hierarchical bucket queuing. By carefully distributing the workload among multiple queues and efficiently deciding which queue to draw work from next, we enable a variety of scheduling strategies. These strategies include fair‐scheduling, earliest‐deadline‐first scheduling and user‐defined dynamic priority scheduling. In a comparison with a sorting‐based approach, we reveal the advantages of hierarchical bucket queuing over previous work. Finally, we demonstrate the benefits of using priority scheduling in real‐world applications by example of path tracing and foveated micropolygon rendering.While the modern graphics processing unit (GPU) offers massive parallel compute power, the ability to influence the scheduling of these immense resources is severely limited. Therefore, the GPU is widely considered to be only suitable as an externally controlled co‐processor for homogeneous workloads which greatly restricts the potential applications of GPU computing. To address this issue, we present a new method to achieve fine‐grained priority scheduling on the GPU: hierarchical bucket queuing. By carefully distributing the workload among multiple queues and efficiently deciding which queue to draw work from next, we enable a variety of scheduling strategies. These strategies include fair‐scheduling, earliest‐deadline‐first scheduling and user‐defined dynamic priority scheduling.Item Real‐Time Solar Exposure Simulation in Complex Cities(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Muñoz‐Pandiella, I.; Bosch, C.; Mérillou, N.; Pueyo, X.; Mérillou, S.; Chen, Min and Zhang, Hao (Richard)In urban design, estimating solar exposure on complex city models is crucial but existing solutions typically focus on simplified building models and are too demanding in terms of memory and computational time. In this paper, we propose an interactive technique that estimates solar exposure on detailed urban scenes. Given a directional exposure map computed over a given time period, we estimate the sky visibility factor that serves to evaluate the final exposure at each visible point. This is done using a screen‐space method based on a two‐scale approach, which is geometry independent and has low storage costs. Our method performs at interactive rates and is designer‐oriented. The proposed technique is relevant in architecture and sustainable building design as it provides tools to estimate the energy performance of buildings as well as weathering effects in urban environments.In urban design, estimating solar exposure on complex city models is crucial but existing solutions typically focus on simplified building models and are too demanding in terms of memory and computational time. In this paper, we propose an interactive technique that estimates solar exposure on detailed urban scenes. Given a directional exposure map computed over a given time period, we estimate the sky visibility factor that serves to evaluate the final exposure at each visible point. This is done using a screen‐space method based on a two‐scale approach, which is geometry independent and has low storage costs.Item Tunable Robustness: An Artificial Contact Strategy with Virtual Actuator Control for Balance(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Silva, D. B.; Nunes, R. F.; Vidal, C. A.; Cavalcante‐Neto, J. B.; Kry, P. G.; Zordan, V. B.; Chen, Min and Zhang, Hao (Richard)Physically based characters have not yet received wide adoption in the entertainment industry because control remains both difficult and unreliable. Even with the incorporation of motion capture for reference, which adds believability, characters fail to be convincing in their appearance when the control is not robust. To address these issues, we propose a simple Jacobian transpose torque controller that employs virtual actuators to create a fast and reasonable tracking system for motion capture. We combine this controller with a novel approach we call the topple‐free foot strategy which conservatively applies artificial torques to the standing foot to produce a character that is capable of performing with arbitrary robustness. The system is both easy to implement and straightforward for the animator to adjust to the desired robustness, by considering the trade‐off between physical realism and stability. We showcase the benefit of our system with a wide variety of example simulations, including energetic motions with multiple support contact changes, such as capoeira, as well as an extension that highlights the approach coupled with a Simbicon controlled walker. With this work, we aim to advance the state‐of‐the‐art in the practical design for physically based characters that can employ unaltered reference motion (e.g. motion capture data) and directly adapt it to a simulated environment without the need for optimization or inverse dynamics.Physically based characters have not yet received wide adoption in the entertainment industry because control remains both difficult and unreliable. Even with the incorporation of motion capture for reference, which adds believability, characters fail to be convincing in their appearance when the control is not robust. To address these issues, we propose a simple Jacobian transpose torque controller that employs virtual actuators to create a fast and reasonable tracking system for motion capture. We combine this controller with a novel approach we call the topple‐free foot strategy which conservatively applies artificial torques to the standing foot to produce a character that is capable of performing with arbitrary robustness.Item DYVERSO: A Versatile Multi‐Phase Position‐Based Fluids Solution for VFX(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Alduán, Iván; Tena, Angel; Otaduy, Miguel A.; Chen, Min and Zhang, Hao (Richard)Many impressive fluid simulation methods have been presented in research papers before. These papers typically focus on demonstrating particular innovative features, but they do not meet in a comprehensive manner the production demands of actual VFX pipelines. VFX artists seek methods that are flexible, efficient, robust and scalable, and these goals often conflict with each other. In this paper, we present a multi‐phase particle‐based fluid simulation framework, based on the well‐known Position‐Based Fluids (PBF) method, designed to address VFX production demands. Our simulation framework handles multi‐phase interactions robustly thanks to a modified constraint formulation for density contrast PBF. And, it also supports the interaction of fluids sampled at different resolutions. We put special care on data structure design and implementation details. Our framework highlights cache‐efficient GPU‐friendly data structures, an improved spatial voxelization technique based on Z‐index sorting, tuned‐up simulation algorithms and two‐way‐coupled collision handling based on VDB fields. Altogether, our fluid simulation framework empowers artists with the efficiency, scalability and versatility needed for simulating very diverse scenes and effects.Many impressive fluid simulation methods have been presented in research papers before. These papers typically focus on demonstrating particular innovative features, but they do not meet in a comprehensive manner the production demands of actual VFX pipelines. VFX artists seek methods that are flexible, efficient, robust and scalable, and these goals often conflict with each other. In this paper, we present a multi‐phase particle‐based fluid simulation framework, based on the well‐known Position‐Based Fluids (PBF) method, designed to address VFX production demands.Item Deformation Grammars: Hierarchical Constraint Preservation Under Deformation(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Vimont, Ulysse; Rohmer, Damien; Begault, Antoine; Cani, Marie‐Paule; Chen, Min and Zhang, Hao (Richard)Deformation grammars are a novel procedural framework enabling to sculpt hierarchical 3D models in an object‐dependent manner. They process object deformations as symbols thanks to user‐defined interpretation rules. We use them to define hierarchical deformation behaviours tailored for each model, and enabling any sculpting gesture to be interpreted as some adapted constraint‐preserving deformation. A variety of object‐specific constraints can be enforced using this framework, such as maintaining distributions of subparts, avoiding self‐penetrations or meeting semantic‐based user‐defined rules. The operations used to maintain constraints are kept transparent to the user, enabling them to focus on their design. We demonstrate the feasibility and the versatility of this approach on a variety of examples, implemented within an interactive sculpting system.Deformation grammars are a novel procedural framework enabling to sculpt hierarchical 3D models in an object‐dependent manner. They process object deformations as symbols thanks to user‐defined interpretation rules. We use them to define hierarchical deformation behaviours tailored for each model,.Item Extracting Sharp Features from RGB‐D Images(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Cao, Y‐P.; Ju, T.; Xu, J.; Hu, S‐M.; Chen, Min and Zhang, Hao (Richard)Sharp edges are important shape features and their extraction has been extensively studied both on point clouds and surfaces. We consider the problem of extracting sharp edges from a sparse set of colour‐and‐depth (RGB‐D) images. The noise‐ridden depth measurements are challenging for existing feature extraction methods that work solely in the geometric domain (e.g. points or meshes). By utilizing both colour and depth information, we propose a novel feature extraction method that produces much cleaner and more coherent feature lines. We make two technical contributions. First, we show that intensity edges can augment the depth map to improve normal estimation and feature localization from a single RGB‐D image. Second, we designed a novel algorithm for consolidating feature points obtained from multiple RGB‐D images. By utilizing normals and ridge/valley types associated with the feature points, our algorithm is effective in suppressing noise without smearing nearby features.Sharp edges are important shape features and their extraction has been extensively studied both on point clouds and surfaces. We consider the problem of extracting sharp edges from a sparse set of colour‐and‐depth (RGB‐D) images. The noise‐ridden depth measurements are challenging for existing feature extraction methods that work solely in the geometric domain (e.g. points or meshes). By utilizing both colour and depth information, we propose a novel feature extraction method that produces much cleaner and more coherent feature lines. We make two technical contributions. First, we show that intensity edges can augment the depth map to improve normal estimation and feature localization from a single RGB‐D image. Second, we designed a novel algorithm for consolidating feature points obtained from multiple RGB‐D images. By utilizing normals and ridge/valley types associated with the feature points, our algorithm is effective in suppressing noise without smearing nearby features.Item Convolutional Sparse Coding for Capturing High‐Speed Video Content(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Serrano, Ana; Garces, Elena; Masia, Belen; Gutierrez, Diego; Chen, Min and Zhang, Hao (Richard)Video capture is limited by the trade‐off between spatial and temporal resolution: when capturing videos of high temporal resolution, the spatial resolution decreases due to bandwidth limitations in the capture system. Achieving both high spatial temporal resolution is only possible with highly specialized and very expensive hardware, and even then the same basic trade‐off remains. The recent introduction of compressive sensing and sparse reconstruction techniques allows for the capture of high‐speed video, by coding the temporal information in a single frame, and then reconstructing the full video sequence from this single‐coded image and a trained dictionary of image patches. In this paper, we first analyse this approach, and find insights that help improve the quality of the reconstructed videos. We then introduce a novel technique, based on (CSC), and show how it outperforms the state‐of‐the‐art, patch‐based approach in terms of flexibility and efficiency, due to the convolutional nature of its filter banks. The key idea for CSC high‐speed video acquisition is extending the basic formulation by imposing an additional constraint in the temporal dimension, which enforces sparsity of the first‐order derivatives over time.Video capture is limited by the trade‐off between spatial and temporal resolution: when capturing videos of high temporal resolution, the spatial resolution decreases due to bandwidth limitations in the capture system. Achieving both high spatial and temporal resolution is only possible with highly specialized and very expensive hardware, and even then the same basic trade‐off remains. .Item Integrated Structural–Architectural Design for Interactive Planning(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Steiner, B.; Mousavian, E.; Saradj, F. Mehdizadeh; Wimmer, M.; Musialski, P.; Chen, Min and Zhang, Hao (Richard)Traditionally, building floor plans are designed by architects with their usability, functionality and architectural aesthetics in mind; however, the structural properties of the distribution of load‐bearing walls and columns are usually not taken into account at this stage. In this paper, we propose a novel approach for the design of architectural floor plans by integrating structural layout analysis directly into the planning process. In order to achieve this, we introduce a planning tool which interactively enforces checks for structural stability of the current design, and which on demand proposes how to stabilize it if necessary. Technically, our solution contains an interactive architectural modelling framework as well as a constrained optimization module where both are based on respective architectural rules. Using our tool, an architect can predict already in a very early planning stage whose designs are structurally sound such that later changes due to stability reasons can be prevented. We compare manually computed solutions with optimal results of our proposed automated design process in order to show how much our proposed system can help architects to improve the process of laying out structural models optimally.Traditionally, building floor plans are designed by architects with their usability, functionality and architectural aesthetics in mind; however, the structural properties of the distribution of load‐bearing walls and columns are usually not taken into account at this stage. In this paper, we propose a novel approach for the design of architectural floor plans by integrating structural layout analysis directly into the planning process. In order to achieve this, we introduce a planning tool which interactively enforces checks for structural stability of the current design, and which on demand proposes how to stabilize it if necessary. Technically, our solution contains an interactive architectural modelling framework as well as a constrained optimization module where both are based on respective architectural rules.Item A Bi‐Directional Procedural Model for Architectural Design(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Hua, H.; Chen, Min and Zhang, Hao (Richard)It is a challenge for shape grammars to incorporate spatial hierarchy and interior connectivity of buildings in early design stages. To resolve this difficulty, we developed a bi‐directional procedural model: the forward process constructs the derivation tree with production rules, while the backward process realizes the tree with shapes in a stepwise manner (from leaves to the root). Each inverse‐derivation step involves essential geometric‐topological reasoning. With this bi‐directional framework, design constraints and objectives are encoded in the grammar‐shape translation. We conducted two applications. The first employs geometric primitives as terminals and the other uses previous designs as terminals. Both approaches lead to consistent interior connectivity and a rich spatial hierarchy. The results imply that bespoke geometric‐topological processing helps shape grammar to create plausible, novel compositions. Our model is more productive than hand‐coded shape grammars, while it is less computation‐intensive than evolutionary treatment of shape grammars.It is a challenge for shape grammars to incorporate spatial hierarchy and interior connectivity of buildings in early design stages. To resolve this difficulty, we developed a bi‐directional procedural model: the forward process constructs the derivation tree with production rules, while the backward process realizes the tree with shapes in a stepwise manner (from leaves to the root). Each inverse‐derivation step involves essential geometric‐topological reasoning. With this bi‐directional framework, design constraints and objectives are encoded in the grammar‐shape translation.Item Visualization of Biomolecular Structures: State of the Art Revisited(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Kozlíková, B.; Krone, M.; Falk, M.; Lindow, N.; Baaden, M.; Baum, D.; Viola, I.; Parulek, J.; Hege, H.‐C.; Chen, Min and Zhang, Hao (Richard)Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three‐dimensional, complex, large and time‐varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three‐dimensional, complex, large and time‐varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail and reviews visualizations illustrating the dynamic aspects of molecular simulation data.Item The State of the Art in Integrating Machine Learning into Visual Analytics(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Endert, A.; Ribarsky, W.; Turkay, C.; Wong, B.L. William; Nabney, I.; Blanco, I. Díaz; Rossi, F.; Chen, Min and Zhang, Hao (Richard)Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large, complex data. While progress has been made, the tactful combination of machine learning and data visualization is still under‐explored. This state‐of‐the‐art report presents a summary of the progress that has been made by highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance the synergy between machine learning and visual analytics for impactful future research directions.Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large, complex data. While progress has been made, the tactful combination of machine learning and data visualization is still under‐explored. This state‐of‐the‐art report presents a summary of the progress that has been made by highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance the synergy between machine learning and visual analytics for impactful future research directions.
- «
- 1 (current)
- 2
- 3
- »