43-Issue 2
Permanent URI for this collection
Browse
Browsing 43-Issue 2 by Issue Date
Now showing 1 - 20 of 54
Results Per Page
Sort Options
Item ShellNeRF: Learning a Controllable High-resolution Model of the Eye and Periocular Region(The Eurographics Association and John Wiley & Sons Ltd., 2024) Li, Gengyan; Sarkar, Kripasindhu; Meka, Abhimitra; Buehler, Marcel; Mueller, Franziska; Gotardo, Paulo; Hilliges, Otmar; Beeler, Thabo; Bermano, Amit H.; Kalogerakis, EvangelosEye gaze and expressions are crucial non-verbal signals in face-to-face communication. Visual effects and telepresence demand significant improvements in personalized tracking, animation, and synthesis of the eye region to achieve true immersion. Morphable face models, in combination with coordinate-based neural volumetric representations, show promise in solving the difficult problem of reconstructing intricate geometry (eyelashes) and synthesizing photorealistic appearance variations (wrinkles and specularities) of eye performances. We propose a novel hybrid representation - ShellNeRF - that builds a discretized volume around a 3DMM face mesh using concentric surfaces to model the deformable 'periocular' region. We define a canonical space using the UV layout of the shells that constrains the space of dense correspondence search. Combined with an explicit eyeball mesh for modeling corneal light-transport, our model allows for animatable photorealistic 3D synthesis of the whole eye region. Using multi-view video input, we demonstrate significant improvements over state-of-the-art in expression re-enactment and transfer for high-resolution close-up views of the eye region.Item Sketch Video Synthesis(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zheng, Yudian; Cun, Xiaodong; Xia, Menghan; Pun, Chi-Man; Bermano, Amit H.; Kalogerakis, EvangelosUnderstanding semantic intricacies and high-level concepts is essential in image sketch generation, and this challenge becomes even more formidable when applied to the domain of videos. To address this, we propose a novel optimization-based framework for sketching videos represented by the frame-wise Bézier Curves. In detail, we first propose a cross-frame stroke initialization approach to warm up the location and the width of each curve. Then, we optimize the locations of these curves by utilizing a semantic loss based on CLIP features and a newly designed consistency loss using the self-decomposed 2D atlas network. Built upon these design elements, the resulting sketch video showcases notable visual abstraction and temporal coherence. Furthermore, by transforming a video into vector lines through the sketching process, our method unlocks applications in sketch-based video editing and video doodling, enabled through video composition.Item Enhancing Spatiotemporal Resampling with a Novel MIS Weight(The Eurographics Association and John Wiley & Sons Ltd., 2024) Pan, Xingyue; Zhang, Jiaxuan; Huang, Jiancong; Liu, Ligang; Bermano, Amit H.; Kalogerakis, EvangelosIn real-time rendering, optimizing the sampling of large-scale candidates is crucial. The spatiotemporal reservoir resampling (ReSTIR) method provides an effective approach for handling large candidate samples, while the Generalized Resampled Importance Sampling (GRIS) theory provides a general framework for resampling algorithms. However, we have observed that when using the generalized multiple importance sampling (MIS) weight in previous work during spatiotemporal reuse, variances gradually amplify in the candidate domain when there are significant differences. To address this issue, we propose a new MIS weight suitable for resampling that blends samples from different sampling domains, ensuring convergence of results as the proportion of non-canonical samples increases. Additionally, we apply this weight to temporal resampling to reduce noise caused by scene changes or jitter. Our method effectively reduces energy loss in the biased version of ReSTIR DI while incurring no additional overhead, and it also suppresses artifacts caused by a high proportion of temporal samples. As a result, our approach leads to lower variance in the sampling results.Item Advancing Front Surface Mapping(The Eurographics Association and John Wiley & Sons Ltd., 2024) Livesu, Marco; Bermano, Amit H.; Kalogerakis, EvangelosWe present Advancing Front Mapping (AFM), a novel algorithm for the computation of injective maps to simple planar domains. AFM is inspired by the advancing front meshing paradigm, which is here revisited to operate on two embeddings at once, becoming a tool for compatible mesh generation. AFM extends the capabilities of existing robust approaches, supporting a broader set of embeddings (star-shaped polygons) with a direct approach, without resorting to intermediate constructions. Our method only relies on two topological operators (split and flip) and on the computation of segment intersections, thus permitting to compute a valid embedding without solving any numerical problem. AFM is therefore easy to implement, debug and deploy. This article is mainly focused on the presentation of the compatible advancing front idea and on the demonstration that the algorithm provably converges to an injective map. We also complement our theoretical analysis with an extensive practical validation, executing more than one billion advancing front moves on 36K mapping tasks.Item Neural Garment Dynamics via Manifold-Aware Transformers(The Eurographics Association and John Wiley & Sons Ltd., 2024) Li, Peizhuo; Wang, Tuanfeng Y.; Kesdogan, Timur Levent; Ceylan, Duygu; Sorkine-Hornung, Olga; Bermano, Amit H.; Kalogerakis, EvangelosData driven and learning based solutions for modeling dynamic garments have significantly advanced, especially in the context of digital humans. However, existing approaches often focus on modeling garments with respect to a fixed parametric human body model and are limited to garment geometries that were seen during training. In this work, we take a different approach and model the dynamics of a garment by exploiting its local interactions with the underlying human body. Specifically, as the body moves, we detect local garment-body collisions, which drive the deformation of the garment. At the core of our approach is a mesh-agnostic garment representation and a manifold-aware transformer network design, which together enable our method to generalize to unseen garment and body geometries. We evaluate our approach on a wide variety of garment types and motion sequences and provide competitive qualitative and quantitative results with respect to the state of the art.Item FontCLIP: A Semantic Typography Visual-Language Model for Multilingual Font Applications(The Eurographics Association and John Wiley & Sons Ltd., 2024) Tatsukawa, Yuki; Shen, I-Chao; Qi, Anran; Koyama, Yuki; Igarashi, Takeo; Shamir, Ariel; Bermano, Amit H.; Kalogerakis, EvangelosAcquiring the desired font for various design tasks can be challenging and requires professional typographic knowledge. While previous font retrieval or generation works have alleviated some of these difficulties, they often lack support for multiple languages and semantic attributes beyond the training data domains. To solve this problem, we present FontCLIP – a model that connects the semantic understanding of a large vision-language model with typographical knowledge. We integrate typographyspecific knowledge into the comprehensive vision-language knowledge of a pretrained CLIP model through a novel finetuning approach. We propose to use a compound descriptive prompt that encapsulates adaptively sampled attributes from a font attribute dataset focusing on Roman alphabet characters. FontCLIP's semantic typographic latent space demonstrates two unprecedented generalization abilities. First, FontCLIP generalizes to different languages including Chinese, Japanese, and Korean (CJK), capturing the typographical features of fonts across different languages, even though it was only finetuned using fonts of Roman characters. Second, FontCLIP can recognize the semantic attributes that are not presented in the training data. FontCLIP's dual-modality and generalization abilities enable multilingual and cross-lingual font retrieval and letter shape optimization, reducing the burden of obtaining desired fonts.Item Volcanic Skies: Coupling Explosive Eruptions with Atmospheric Simulation to Create Consistent Skyscapes(The Eurographics Association and John Wiley & Sons Ltd., 2024) Pretorius, Pieter C.; Gain, James; Lastic, Maud; Cordonnier, Guillaume; Chen, Jiong; Rohmer, Damien; Cani, Marie-Paule; Bermano, Amit H.; Kalogerakis, EvangelosExplosive volcanic eruptions rank among the most terrifying natural phenomena, and are thus frequently depicted in films, games, and other media, usually with a bespoke once-off solution. In this paper, we introduce the first general-purpose model for bi-directional interaction between the atmosphere and a volcano plume. In line with recent interactive volcano models, we approximate the plume dynamics with Lagrangian disks and spheres and the atmosphere with sparse layers of 2D Eulerian grids, enabling us to focus on the transfer of physical quantities such as temperature, ash, moisture, and wind velocity between these sub-models. We subsequently generate volumetric animations by noise-based procedural upsampling keyed to aspects of advection, convection, moisture, and ash content to generate a fully-realized volcanic skyscape. Our model captures most of the visually salient features emerging from volcano-sky interaction, such as windswept plumes, enmeshed cap, bell and skirt clouds, shockwave effects, ash rain, and sheathes of lightning visible in the dark.Item Physically-Based Lighting for 3D Generative Models of Cars(The Eurographics Association and John Wiley & Sons Ltd., 2024) Violante, Nicolas; Gauthier, Alban; Diolatzis, Stavros; Leimkühler, Thomas; Drettakis, George; Bermano, Amit H.; Kalogerakis, EvangelosRecent work has demonstrated that Generative Adversarial Networks (GANs) can be trained to generate 3D content from 2D image collections, by synthesizing features for neural radiance field rendering. However, most such solutions generate radiance, with lighting entangled with materials. This results in unrealistic appearance, since lighting cannot be changed and view-dependent effects such as reflections do not move correctly with the viewpoint. In addition, many methods have difficulty for full, 360? rotations, since they are often designed for mainly front-facing scenes such as faces. We introduce a new 3D GAN framework that addresses these shortcomings, allowing multi-view coherent 360? viewing and at the same time relighting for objects with shiny reflections, which we exemplify using a car dataset. The success of our solution stems from three main contributions. First, we estimate initial camera poses for a dataset of car images, and then learn to refine the distribution of camera parameters while training the GAN. Second, we propose an efficient Image-Based Lighting model, that we use in a 3D GAN to generate disentangled reflectance, as opposed to the radiance synthesized in most previous work. The material is used for physically-based rendering with a dataset of environment maps. Third, we improve the 3D GAN architecture compared to previous work and design a careful training strategy that allows effective disentanglement. Our model is the first that generate a variety of 3D cars that are multi-view consistent and that can be relit interactively with any environment map.Item GANtlitz: Ultra High Resolution Generative Model for Multi-Modal Face Textures(The Eurographics Association and John Wiley & Sons Ltd., 2024) Gruber, Aurel; Collins, Edo; Meka, Abhimitra; Mueller, Franziska; Sarkar, Kripasindhu; Orts-Escolano, Sergio; Prasso, Luca; Busch, Jay; Gross, Markus; Beeler, Thabo; Bermano, Amit H.; Kalogerakis, EvangelosHigh-resolution texture maps are essential to render photoreal digital humans for visual effects or to generate data for machine learning. The acquisition of high resolution assets at scale is cumbersome, it involves enrolling a large number of human subjects, using expensive multi-view camera setups, and significant manual artistic effort to align the textures. To alleviate these problems, we introduce GANtlitz (A play on the german noun Antlitz, meaning face), a generative model that can synthesize multi-modal ultra-high-resolution face appearance maps for novel identities. Our method solves three distinct challenges: 1) unavailability of a very large data corpus generally required for training generative models, 2) memory and computational limitations of training a GAN at ultra-high resolutions, and 3) consistency of appearance features such as skin color, pores and wrinkles in high-resolution textures across different modalities. We introduce dual-style blocks, an extension to the style blocks of the StyleGAN2 architecture, which improve multi-modal synthesis. Our patch-based architecture is trained only on image patches obtained from a small set of face textures (<100) and yet allows us to generate seamless appearance maps of novel identities at 6k×4k resolution. Extensive qualitative and quantitative evaluations and baseline comparisons show the efficacy of our proposed system.Item BallMerge: High-quality Fast Surface Reconstruction via Voronoi Balls(The Eurographics Association and John Wiley & Sons Ltd., 2024) Parakkat, Amal Dev; Ohrhallinger, Stefan; Eisemann, Elmar; Memari, Pooran; Bermano, Amit H.; Kalogerakis, EvangelosWe introduce a Delaunay-based algorithm for reconstructing the underlying surface of a given set of unstructured points in 3D. The implementation is very simple, and it is designed to work in a parameter-free manner. The solution builds upon the fact that in the continuous case, a closed surface separates the set of maximal empty balls (medial balls) into an interior and exterior. Based on discrete input samples, our reconstructed surface consists of the interface between Voronoi balls, which approximate the interior and exterior medial balls. An initial set of Voronoi balls is iteratively processed, merging Voronoi-ball pairs if they fulfil an overlapping error criterion. Our complete open-source reconstruction pipeline performs up to two quick linear-time passes on the Delaunay complex to output the surface, making it an order of magnitude faster than the state of the art while being competitive in memory usage and often superior in quality. We propose two variants (local and global), which are carefully designed to target two different reconstruction scenarios for watertight surfaces from accurate or noisy samples, as well as real-world scanned data sets, exhibiting noise, outliers, and large areas of missing data. The results of the global variant are, by definition, watertight, suitable for numerical analysis and various applications (e.g., 3D printing). Compared to classical Delaunay-based reconstruction techniques, our method is highly stable and robust to noise and outliers, evidenced via various experiments, including on real-world data with challenges such as scan shadows, outliers, and noise, even without additional preprocessing.Item OptFlowCam: A 3D-Image-Flow-Based Metric in Camera Space for Camera Paths in Scenes with Extreme Scale Variations(The Eurographics Association and John Wiley & Sons Ltd., 2024) Piotrowski, Lisa; Motejat, Michael; Rössl, Christian; Theisel, Holger; Bermano, Amit H.; Kalogerakis, EvangelosInterpolation between camera positions is a standard problem in computer graphics and can be considered the foundation of camera path planning. As the basis for a new interpolation method, we introduce a new Riemannian metric in camera space, which measures the 3D image flow under a small movement of the camera. Building on this, we define a linear interpolation between two cameras as shortest geodesic in camera space, for which we provide a closed-form solution after a mild simplification of the metric. Furthermore, we propose a geodesic Catmull-Rom interpolant for keyframe camera animation. We compare our approach with several standard camera interpolation methods and obtain consistently better camera paths especially for cameras with extremely varying scales.Item 3D Reconstruction and Semantic Modeling of Eyelashes(The Eurographics Association and John Wiley & Sons Ltd., 2024) Kerbiriou, Glenn; Avril, Quentin; Marchal, Maud; Bermano, Amit H.; Kalogerakis, EvangelosHigh-fidelity digital human modeling has become crucial in various applications, including gaming, visual effects and virtual reality. Despite the significant impact of eyelashes on facial aesthetics, their reconstruction and modeling have been largely unexplored. In this paper, we introduce the first data-driven generative model of eyelashes based on semantic features. This model is derived from real data by introducing a new 3D eyelash reconstruction method based on multi-view images. The reconstructed data is made available which constitutes the first dataset of 3D eyelashes ever published. Through an innovative extraction process, we determine the features of any set of eyelashes, and present detailed descriptive statistics of human eyelashes shapes. The proposed eyelashes model, which exclusively relies on semantic parameters, effectively captures the appearance of a set of eyelashes. Results show that the proposed model enables interactive, intuitive and realistic eyelashes modeling for non-experts, enriching avatar creation and synthetic data generation pipelines.Item Strokes2Surface: Recovering Curve Networks From 4D Architectural Design Sketches(The Eurographics Association and John Wiley & Sons Ltd., 2024) Rasoulzadeh, Shervin; Wimmer, Michael; Stauss, Philipp; Kovacic, Iva; Bermano, Amit H.; Kalogerakis, EvangelosWe present Strokes2Surface, an offline geometry reconstruction pipeline that recovers well-connected curve networks from imprecise 4D sketches to bridge concept design and digital modeling stages in architectural design. The input to our pipeline consists of 3D strokes' polyline vertices and their timestamps as the 4th dimension, along with additional metadata recorded throughout sketching. Inspired by architectural sketching practices, our pipeline combines a classifier and two clustering models to achieve its goal. First, with a set of extracted hand-engineered features from the sketch, the classifier recognizes the type of individual strokes between those depicting boundaries (Shape strokes) and those depicting enclosed areas (Scribble strokes). Next, the two clustering models parse strokes of each type into distinct groups, each representing an individual edge or face of the intended architectural object. Curve networks are then formed through topology recovery of consolidated Shape clusters and surfaced using Scribble clusters guiding the cycle discovery. Our evaluation is threefold: We confirm the usability of the Strokes2Surface pipeline in architectural design use cases via a user study, we validate our choice of features via statistical analysis and ablation studies on our collected dataset, and we compare our outputs against a range of reconstructions computed using alternative methods.Item Single-Image SVBRDF Estimation with Learned Gradient Descent(The Eurographics Association and John Wiley & Sons Ltd., 2024) Luo, Xuejiao; Scandolo, Leonardo; Bousseau, Adrien; Eisemann, Elmar; Bermano, Amit H.; Kalogerakis, EvangelosRecovering spatially-varying materials from a single photograph of a surface is inherently ill-posed, making the direct application of a gradient descent on the reflectance parameters prone to poor minima. Recent methods leverage deep learning either by directly regressing reflectance parameters using feed-forward neural networks or by learning a latent space of SVBRDFs using encoder-decoder or generative adversarial networks followed by a gradient-based optimization in latent space. The former is fast but does not account for the likelihood of the prediction, i.e., how well the resulting reflectance explains the input image. The latter provides a strong prior on the space of spatially-varying materials, but this prior can hinder the reconstruction of images that are too different from the training data. Our method combines the strengths of both approaches. We optimize reflectance parameters to best reconstruct the input image using a recurrent neural network, which iteratively predicts how to update the reflectance parameters given the gradient of the reconstruction likelihood. By combining a learned prior with a likelihood measure, our approach provides a maximum a posteriori estimate of the SVBRDF. Our evaluation shows that this learned gradient-descent method achieves state-of-the-art performance for SVBRDF estimation on synthetic and real images.Item Non-Euclidean Sliced Optimal Transport Sampling(The Eurographics Association and John Wiley & Sons Ltd., 2024) Genest, Baptiste; Courty, Nicolas; Coeurjolly, David; Bermano, Amit H.; Kalogerakis, EvangelosIn machine learning and computer graphics, a fundamental task is the approximation of a probability density function through a well-dispersed collection of samples. Providing a formal metric for measuring the distance between probability measures on general spaces, Optimal Transport (OT) emerges as a pivotal theoretical framework within this context. However, the associated computational burden is prohibitive in most real-world scenarios. Leveraging the simple structure of OT in 1D, Sliced Optimal Transport (SOT) has appeared as an efficient alternative to generate samples in Euclidean spaces. This paper pushes the boundaries of SOT utilization in computational geometry problems by extending its application to sample densities residing on more diverse mathematical domains, including the spherical space Sd, the hyperbolic plane Hd, and the real projective plane Pd. Moreover, it ensures the quality of these samples by achieving a blue noise characteristic, regardless of the dimensionality involved. The robustness of our approach is highlighted through its application to various geometry processing tasks, such as the intrinsic blue noise sampling of meshes, as well as the sampling of directions and rotations. These applications collectively underscore the efficacy of our methodology.Item GLS-PIA: n-Dimensional Spherical B-Spline Curve Fitting based on Geodesic Least Square with Adaptive Knot Placement(The Eurographics Association and John Wiley & Sons Ltd., 2024) Zhao, Yuming; Wu, Zhongke; Wang, Xingce; Bermano, Amit H.; Kalogerakis, EvangelosDue to the widespread applications of curves on n-dimensional spheres, fitting curves on n-dimensional spheres has received increasing attention in recent years. However, due to the non-Euclidean nature of spheres, curve fitting methods on n-dimensional spheres often struggle to balance fitting accuracy and curve fairness. In this paper, we propose a new fitting framework, GLSPIA, for parameterized point sets on n-dimensional spheres to address the challenge. Meanwhile, we provide the proof of the method. Firstly, we propose a progressive iterative approximation method based on geodesic least squares which can directly optimize the geodesic least squares loss on the n-sphere, improving the accuracy of the fitting. Additionally, we use an error allocation method based on contribution coefficients to ensure the fairness of the fitting curve. Secondly, we propose an adaptive knot placement method based on geodesic difference to estimate a more reasonable distribution of control points in the parameter domain, placing more control points in areas with greater detail. This enables B-spline curves to capture more details with a limited number of control points. Experimental results demonstrate that our framework achieves outstanding performance, especially in handling imbalanced data points. (In this paper, ''sphere'' refers to n-sphere (n = 2) unless otherwise specified.)Item SENS: Part-Aware Sketch-based Implicit Neural Shape Modeling(The Eurographics Association and John Wiley & Sons Ltd., 2024) Binninger, Alexandre; Hertz, Amir; Sorkine-Hornung, Olga; Cohen-Or, Daniel; Giryes, Raja; Bermano, Amit H.; Kalogerakis, EvangelosWe present SENS, a novel method for generating and editing 3D models from hand-drawn sketches, including those of abstract nature. Our method allows users to quickly and easily sketch a shape, and then maps the sketch into the latent space of a partaware neural implicit shape architecture. SENS analyzes the sketch and encodes its parts into ViT patch encoding, subsequently feeding them into a transformer decoder that converts them to shape embeddings suitable for editing 3D neural implicit shapes. SENS provides intuitive sketch-based generation and editing, and also succeeds in capturing the intent of the user's sketch to generate a variety of novel and expressive 3D shapes, even from abstract and imprecise sketches. Additionally, SENS supports refinement via part reconstruction, allowing for nuanced adjustments and artifact removal. It also offers part-based modeling capabilities, enabling the combination of features from multiple sketches to create more complex and customized 3D shapes. We demonstrate the effectiveness of our model compared to the state-of-the-art using objective metric evaluation criteria and a user study, both indicating strong performance on sketches with a medium level of abstraction. Furthermore, we showcase our method's intuitive sketch-based shape editing capabilities, and validate it through a usability study.Item Polygon Laplacian Made Robust(The Eurographics Association and John Wiley & Sons Ltd., 2024) Bunge, Astrid; Bukenberger, Dennis R.; Wagner, Sven Dominik; Alexa, Marc; Botsch, Mario; Bermano, Amit H.; Kalogerakis, EvangelosDiscrete Laplacians are the basis for various tasks in geometry processing. While the most desirable properties of the discretization invariably lead to the so-called cotangent Laplacian for triangle meshes, applying the same principles to polygon Laplacians leaves degrees of freedom in their construction. From linear finite elements it is well-known how the shape of triangles affects both the error and the operator's condition. We notice that shape quality can be encapsulated as the trace of the Laplacian and suggest that trace minimization is a helpful tool to improve numerical behavior. We apply this observation to the polygon Laplacian constructed from a virtual triangulation [BHKB20] to derive optimal parameters per polygon. Moreover, we devise a smoothing approach for the vertices of a polygon mesh to minimize the trace. We analyze the properties of the optimized discrete operators and show their superiority over generic parameter selection in theory and through various experiments.Item Real-Time Neural Materials using Block-Compressed Features(The Eurographics Association and John Wiley & Sons Ltd., 2024) Weinreich, Clément; Oliveira, Louis De; Houdard, Antoine; Nader, Georges; Bermano, Amit H.; Kalogerakis, EvangelosNeural materials typically consist of a collection of neural features along with a decoder network. The main challenge in integrating such models in real-time rendering pipelines lies in the large size required to store their features in GPU memory and the complexity of evaluating the network efficiently. We present a neural material model whose features and decoder are specifically designed to be used in real-time rendering pipelines. Our framework leverages hardware-based block compression (BC) texture formats to store the learned features and trains the model to output the material information continuously in space and scale. To achieve this, we organize the features in a block-based manner and emulate BC6 decompression during training, making it possible to export them as regular BC6 textures. This structure allows us to use high resolution features while maintaining a low memory footprint. Consequently, this enhances our model's overall capability, enabling the use of a lightweight and simple decoder architecture that can be evaluated directly in a shader. Furthermore, since the learned features can be decoded continuously, it allows for random uv sampling and smooth transition between scales without needing any subsequent filtering. As a result, our neural material has a small memory footprint, can be decoded extremely fast adding a minimal computational overhead to the rendering pipeline.Item Navigating the Manifold of Translucent Appearance(The Eurographics Association and John Wiley & Sons Ltd., 2024) Lanza, Dario; Masia, Belen; Jarabo, Adrian; Bermano, Amit H.; Kalogerakis, EvangelosWe present a perceptually-motivated manifold for translucent appearance, designed for intuitive editing of translucent materials by navigating through the manifold. Classic tools for editing translucent appearance, based on the use of sliders to tune a number of parameters, are challenging for non-expert users: These parameters have a highly non-linear effect on appearance, and exhibit complex interplay and similarity relations between them. Instead, we pose editing as a navigation task in a low-dimensional space of appearances, which abstracts the user from the underlying optical parameters. To achieve this, we build a low-dimensional continuous manifold of translucent appearance that correlates with how humans perceive this type of materials. We first analyze the correlation of different distance metrics in image space with human perception. We select the best-performing metric to build a low-dimensional manifold, which can be used to navigate the space of translucent appearance. To evaluate the validity of our proposed manifold within its intended application scenario, we build an editing interface that leverages the manifold, and relies on image navigation plus a fine-tuning step to edit appearance. We compare our intuitive interface to a traditional, slider-based one in a user study, demonstrating its effectiveness and superior performance when editing translucent objects.
- «
- 1 (current)
- 2
- 3
- »