EuroVis19: Eurographics Conference on Visualization
Permanent URI for this collection
Browse
Browsing EuroVis19: Eurographics Conference on Visualization by Issue Date
Now showing 1 - 20 of 59
Results Per Page
Sort Options
Item Multiple Views: Different Meanings and Collocated Words(The Eurographics Association and John Wiley & Sons Ltd., 2019) Roberts, Jonathan; Al-Maneea, Hayder; Butcher, Peter; Lew, Robert; Rees, Geraint Paul; Sharma, Nirwan; Frankenberg-Garcia, Ana; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe report on an in-depth corpus linguistic study on 'multiple views' terminology and word collocation. We take a broad interpretation of these terms, and explore the meaning and diversity of their use in visualisation literature. First we explore senses of the term 'multiple views' (e.g.,'multiple views' can mean juxtaposition, many viewport projections or several alternative opinions). Second, we investigate term popularity and frequency of occurrences, investigating usage of 'multiple' and 'view' (e.g., multiple views, multiple visualisations, multiple sets). Third, we investigate word collocations and terms that have a similar sense (e.g., multiple views, side-by-side, small multiples). We built and used several corpora, including a 6-million-word corpus of all IEEE Visualisation conference articles published in IEEE Transactions on Visualisation and Computer Graphics 2012 to 2017. We draw on our substantial experience from early work in coordinated and multiple views, and with collocation analysis develop several lists of terms. This research provides insight into term use, a reference for novice and expert authors in visualisation, and contributes a taxonomy of 'multiple view' terms.Item A User-based Visual Analytics Workflow for Exploratory Model Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2019) Cashman, Dylan; Humayoun, Shah Rukh; Heimerl, Florian; Park, Kendall; Das, Subhajit; Thompson, John; Saket, Bahador; Mosca, Abigail; Stasko, John; Endert, Alex; Gleicher, Michael; Chang, Remco; Gleicher, Michael and Viola, Ivan and Leitte, HeikeMany visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an accurate predictive model for future use. In that case, users are more interested in generating of diverse and robust predictive models, verifying their performance on holdout data, and selecting the most suitable model for their usage scenario. In this paper, we consider the concept of Exploratory Model Analysis (EMA), which is defined as the process of discovering and selecting relevant models that can be used to make predictions on a data source. We delineate the differences between EMA and the well-known term exploratory data analysis in terms of the desired outcome of the analytic process: insights into the data or a set of deployable models. The contributions of this work are a visual analytics system workflow for EMA, a user study, and two use cases validating the effectiveness of the workflow. We found that our system workflow enabled users to generate complex models, to assess them for various qualities, and to select the most relevant model for their task.Item DIVA: Exploration and Validation of Hypothesized Drug-Drug Interactions(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kakar, Tabassum; Qin, Xiao; Rundensteiner, Elke A.; Harrison, Lane; Sahoo, Sanjay K.; De, Suranjan; Gleicher, Michael and Viola, Ivan and Leitte, HeikeAdverse reactions caused by drug-drug interactions are a major public health concern. Currently, adverse reaction signals are detected through a tedious manual process in which drug safety analysts review a large number of reports collected through post-marketing drug surveillance. While computational techniques in support of this signal analysis are necessary, alone they are not sufficient. In particular, when machine learning techniques are applied to extract candidate signals from reports, the resulting set is (1) too large in size, i.e., exponential to the number of unique drugs and reactions in reports, (2) disconnected from the underlying reports that serve as evidence and context, and (3) ultimately requires human intervention to be validated in the domain context as a true signal warranting action. In this work, we address these challenges though a visual analytics system, DIVA, designed to align with the drug safety analysis workflow by supporting the detection, screening, and verification of candidate drug interaction signals. DIVA's abstractions and encodings are informed by formative interviews with drug safety analysts. DIVA's coordinated visualizations realize a proposed novel augmented interaction data model (AIM) which links signals generated by machine learning techniques with domain-specific metadata critical for signal analysis. DIVA's alignment with the drug review process allows an analyst to interactively screen for important signals, triage signals for in-depth investigation, and validate signals by reviewing the underlying reports that serve as evidence. The evaluation of DIVA encompasses case-studies and interviews by drug analysts at the US Food and Drug Administration - both of which confirm that DIVA indeed is effective in supporting analysts in the critical task of exploring and verifying dangerous drug-drug interactions.Item Linking and Layout: Exploring the Integration of Text and Visualization in Storytelling(The Eurographics Association and John Wiley & Sons Ltd., 2019) Zhi, Qiyu; Ottley, Alvitta; Metoyer, Ronald; Gleicher, Michael and Viola, Ivan and Leitte, HeikeModern web technologies are enabling authors to create various forms of text visualization integration for storytelling. This integration may shape the stories' flow and thereby affect the reading experience. In this paper, we seek to understand two text visualization integration forms: (i) different text and visualization spatial arrangements (layout), namely, vertical and slideshow; and (ii) interactive linking of text and visualization (linking). Here, linking refers to a bidirectional interaction mode that explicitly highlights the explanatory visualization element when selecting narrative text and vice versa. Through a crowdsourced study with 180 participants, we measured the effect of layout and linking on the degree to which users engage with the story (user engagement), their understanding of the story content (comprehension), and their ability to recall the story information (recall). We found that participants performed significantly better in comprehension tasks with the slideshow layout. Participant recall was better with the slideshow layout under conditions with linking versus no linking. We also found that linking significantly increased user engagement. Additionally, linking and the slideshow layout were preferred by the participants. We also explored user reading behaviors with different conditions.Item Bridging the Data Analysis Communication Gap Utilizing a Three-Component Summarized Line Graph(The Eurographics Association and John Wiley & Sons Ltd., 2019) Yau, Calvin; Karimzadeh, Morteza; Surakitbanharn, Chittayong; Elmqvist, Niklas; Ebert, David; Gleicher, Michael and Viola, Ivan and Leitte, HeikeCommunication-minded visualizations are designed to provide their audience-managers, decision-makers, and the public-with new knowledge. Authoring such visualizations effectively is challenging because the audience often lacks the expertise, context, and time that professional analysts have at their disposal to explore and understand datasets. We present a novel summarized line graph visualization technique designed specifically for data analysts to communicate data to decision-makers more effectively and efficiently. Our summarized line graph reduces a large and detailed dataset of multiple quantitative time-series into (1) representative data that provides a quick takeaway of the full dataset; (2) analytical highlights that distinguish specific insights of interest; and (3) a data envelope that summarizes the remaining aggregated data. Our summarized line graph achieved the best overall results when evaluated against line graphs, band graphs, stream graphs, and horizon graphs on four representative tasks.Item EuroVis 2019 CGF 38-3: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2019) Gleicher, Michael; Viola, Ivan; Leitte, Heike; Gleicher, Michael and Viola, Ivan and Leitte, HeikeItem SurgeryCuts: Embedding Additional Information in Maps without Occluding Features(The Eurographics Association and John Wiley & Sons Ltd., 2019) Angelini, Marco; Buchmüller, Juri; Keim, Daniel A.; Meschenmoser, Philipp; Santucci, Giuseppe; Gleicher, Michael and Viola, Ivan and Leitte, HeikeVisualizing contextual information to a map often comes at the expense of overplotting issues. Especially for use cases with relevant map features in the immediate vicinity of an information to add, occlusion of the relevant map context should be avoided. We present SurgeryCuts, a map manipulation technique for the creation of additional canvas area for contextual visualizations on maps. SurgeryCuts is occlusion-free and does not shift, zoom or alter the map viewport. Instead, relevant parts of the map can be cut apart. The affected area is controlledly distorted using a parameterizable warping function fading out the map distortion depending on the distance to the cut. We define extended metrics for our approach and compare to related approaches. As well, we demonstrate the applicability of our approach at the example of tangible use cases and a comparative user study.Item Examining Implicit Discretization in Spectral Schemes(The Eurographics Association and John Wiley & Sons Ltd., 2019) Quinan, P. Samuel; Padilla, Lace M. K.; Creem-Regehr, Sarah H.; Meyer, Miriah; Gleicher, Michael and Viola, Ivan and Leitte, HeikeTwo of the primary reasons rainbow color maps are considered ineffective trace back to the idea that they implicitly discretize encoded data into hue-based bands, yet no research addresses what this discretization looks like or how consistent it is across individuals. This paper presents an exploratory study designed to empirically investigate the implicit discretization of common spectral schemes and explore whether the phenomenon can be modeled by variations in lightness, chroma, and hue. Our results suggest that three commonly used rainbow color maps are implicitly discretized with consistency across individuals. The results also indicate, however, that this implicit discretization varies across different datasets, in a way that suggests the visualization community's understanding of both rainbow color maps, and more generally effective color usage, remains incomplete.Item Investigating Effects of Visual Anchors on Decision-Making about Misinformation(The Eurographics Association and John Wiley & Sons Ltd., 2019) Wesslen, Ryan; Santhanam, Sashank; Karduni, Alireza; Cho, Isaac; Shaikh, Samira; Dou, Wenwen; Gleicher, Michael and Viola, Ivan and Leitte, HeikeCognitive biases are systematic errors in judgment due to an over-reliance on rule-of-thumb heuristics. Recent research suggests that cognitive biases, like numerical anchoring, transfers to visual analytics in the form of visual anchoring. However, it is unclear how visualization users can be visually anchored and how the anchors affect decision-making. To investigate, we performed a between-subjects laboratory experiment with 94 participants to analyze the effects of visual anchors and strategy cues using a visual analytics system. The decision-making task was to identify misinformation from Twitter news accounts. Participants were randomly assigned to conditions that modified the scenario video (visual anchor) and/or strategy cues provided. Our findings suggest that such interventions affect user activity, speed, confidence, and, under certain circumstances, accuracy. We discuss implications of our results on the forking paths problem and raise concerns on how visualization researchers train users to avoid unintentionally anchoring users and affecting the end result.Item Oui! Outlier Interpretation on Multi-dimensional Data via Visual Analytics(The Eurographics Association and John Wiley & Sons Ltd., 2019) Zhao, Xun; Cui, Weiwei; Wu, Yanhong; Zhang, Haidong; Qu, Huamin; Zhang, Dongmei; Gleicher, Michael and Viola, Ivan and Leitte, HeikeOutliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social analysis, and public health. By detecting and analyzing outliers, users can either gain insights into abnormal patterns or purge the data of errors. However, different domains usually have different considerations with respect to outliers. Understanding the defining characteristics of outliers is essential for users to select and filter appropriate outliers based on their domain requirements. Unfortunately, most existing work focuses on the efficiency and accuracy of outlier detection, neglecting the importance of outlier interpretation. To address these issues, we propose Oui, a visual analytic system that helps users understand, interpret, and select the outliers detected by various algorithms. We also present a usage scenario on a real dataset and a qualitative user study to demonstrate the effectiveness and usefulness of our system.Item Segmentifier: Interactive Refinement of Clickstream Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Dextras-Romagnino, Kimberly; Munzner, Tamara; Gleicher, Michael and Viola, Ivan and Leitte, HeikeClickstream data has the potential to provide insights into e-commerce consumer behavior, but previous techniques fall short of handling the scale and complexity of real-world datasets because they require relatively clean and small input. We present Segmentifier, a novel visual analytics interface that supports an iterative process of refining collections of action sequences into meaningful segments. We present task and data abstractions for clickstream data analysis, leading to a high-level model built around an iterative view-refine-record loop with outcomes of conclude with an answer, export segment for further analysis in downstream tools, or abandon the question for a more fruitful analysis path. Segmentifier supports fast and fluid refinement of segments through tightly coupled visual encoding and interaction with a rich set of views that show evocative derived attributes for segments, sequences, and actions in addition to underlying raw sequences. These views support fast and fluid refinement of segments through filtering and partitioning attribute ranges. Interactive visual queries on custom action sequences are aggregated according to a three-level hierarchy. Segmentifier features a detailed glyph-based visual history of the automatically recorded analysis process showing the provenance of each segment as an analysis path of attribute constraints. We demonstrate the effectiveness of our approach through a usage scenario with real-world data and a case study documenting the insights gained by a corporate e-commerce analyst.Item Latent Space Cartography: Visual Analysis of Vector Space Embeddings(The Eurographics Association and John Wiley & Sons Ltd., 2019) Liu, Yang; Jun, Eunice; Li, Qisheng; Heer, Jeffrey; Gleicher, Michael and Viola, Ivan and Leitte, HeikeLatent spaces-reduced-dimensionality vector space embeddings of data, fit via machine learning-have been shown to capture interesting semantic properties and support data analysis and synthesis within a domain. Interpretation of latent spaces is challenging because prior knowledge, sometimes subtle and implicit, is essential to the process. We contribute methods for ''latent space cartography'', the process of mapping and comparing meaningful semantic dimensions within latent spaces. We first perform a literature survey of relevant machine learning, natural language processing, and scientific research to distill common tasks and propose a workflow process. Next, we present an integrated visual analysis system for supporting this workflow, enabling users to discover, define, and verify meaningful relationships among data points, encoded within latent space dimensions. Three case studies demonstrate how users of our system can compare latent space variants in image generation, challenge existing findings on cancer transcriptomes, and assess a word embedding benchmark.Item Capture & Analysis of Active Reading Behaviors for Interactive Articles on the Web(The Eurographics Association and John Wiley & Sons Ltd., 2019) Conlen, Matthew; Kale, Alex; Heer, Jeffrey; Gleicher, Michael and Viola, Ivan and Leitte, HeikeJournalists, educators, and technical writers are increasingly publishing interactive content on the web. However, popular analytics tools provide only coarse information about how readers interact with individual pages, and laboratory studies often fail to capture the variability of a real-world audience. We contribute extensions to the Idyll markup language to automate the detailed instrumentation of interactive articles and corresponding visual analysis tools for inspecting reader behavior at both micro- and macro-levels. We present three case studies of interactive articles that were instrumented, posted online, and promoted via social media to reach broad audiences, and share data from over 50,000 reader sessions. We demonstrate the use of our tools to characterize article-specific interaction patterns, compare behavior across desktop and mobile devices, and reveal reading patterns common across articles. Our contributed findings, tools, and corpus of behavioral data can help advance and inform more comprehensive studies of narrative visualization.Item Visual-Interactive Preprocessing of Multivariate Time Series Data(The Eurographics Association and John Wiley & Sons Ltd., 2019) Bernard, Jürgen; Hutter, Marco; Reinemuth, Heiko; Pfeifer, Hendrik; Bors, Christian; Kohlhammer, Jörn; Gleicher, Michael and Viola, Ivan and Leitte, HeikePre-processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre-processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre-processing pipelines, human-in-the-loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in-depth research in visual analytics. We present a visual-interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre-processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty-aware pre-processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre-processing in general and for uncertainty-aware pre-processing of multivariate time series in particular.Item Analysis of Decadal Climate Predictions with User-guided Hierarchical Ensemble Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kappe, Christopher; Böttinger, Michael; Leitte, Heike; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn order to gain probabilistic results, ensemble simulation techniques are increasingly applied in the weather and climate sciences (as well as in various other scientific disciplines). In many cases, however, only mean results or other abstracted quantities such as percentiles are used for further analyses and dissemination of the data. In this work, we aim at a more detailed visualization of the temporal development of the whole ensemble that takes the variability of all single members into account. We propose a visual analytics tool that allows an effective analysis process based on a hierarchical clustering of the time-dependent scalar fields. The system includes a flow chart that shows the ensemble members' cluster affiliation over time, reflecting the whole cluster hierarchy. The latter one can be dynamically explored using a visualization derived from a dendrogram. As an aid in linking the different views, we have developed an adaptive coloring scheme that takes into account cluster similarity and the containment relationships. Finally, standard visualizations of the involved field data (cluster means, ground truth data, etc.) are also incorporated. We include results of our work on real-world datasets to showcase the utility of our approach.Item IGM-Vis: Analyzing Intergalactic and Circumgalactic Medium Absorption Using Quasar Sightlines in a Cosmic Web Context(The Eurographics Association and John Wiley & Sons Ltd., 2019) Burchett, Joseph N.; Abramov, David; Otto, Jasmine Tan; Artanegara, Cassia; Prochaska, Jason Xavier; Forbes, Angus G.; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe introduce IGM-Vis, a novel astrophysics visualization and data analysis application for investigating galaxies and the gas that surrounds them in context with their larger scale environment, the Cosmic Web. Environment is an important factor in the evolution of galaxies from actively forming stars to quiescent states with little, if any, discernible star formation activity. The gaseous halos of galaxies (the circumgalactic medium, or CGM) play a critical role in their evolution, because the gas necessary to fuel star formation and any gas expelled from widely observed galactic winds must encounter this interface region between galaxies and the intergalactic medium (IGM). We present a taxonomy of tasks typically employed in IGM/CGM studies informed by a survey of astrophysicists at various career levels, and demonstrate how these tasks are facilitated via the use of our visualization software. Finally, we evaluate the effectiveness of IGM-Vis through two in-depth use cases that depict real-world analysis sessions that use IGM/CGM data.Item The Dependent Vectors Operator(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hofmann, Lutz; Sadlo, Filip; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn this paper, we generalize the parallel vectors operator due to Peikert and Roth to arbitrary dimension, i.e., to four-dimensional fields and beyond. Whereas the original operator tested for parallelism of two (derived) 2D or 3D vector fields, we reformulate the concept in terms of linear dependency of sets of vector fields, and propose a generic technique to extract and filter the solution manifolds.We exemplify our approach for vortex cores, bifurcations, and ridges as well as valleys in higher dimensions.Item Ray Tracing Generalized Tube Primitives: Method and Applications(The Eurographics Association and John Wiley & Sons Ltd., 2019) Han, Mengjiao; Wald, Ingo; Usher, Will; Wu, Qi; Wang, Feng; Pascucci, Valerio; Hansen, Charles D.; Johnson, Chris R.; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe present a general high-performance technique for ray tracing generalized tube primitives. Our technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph structures with bifurcations, and correct transparency with interior surface removal. Such tube primitives are widely used in scientific visualization to represent diffusion tensor imaging tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality rendering, with low memory overhead.Item ClustMe: A Visual Quality Measure for Ranking Monochrome Scatterplots based on Cluster Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2019) Abbas, Mostafa M.; Aupetit, Michaël; Sedlmair, Michael; Bensmail, Halima; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe propose ClustMe, a new visual quality measure to rank monochrome scatterplots based on cluster patterns. ClustMe is based on data collected from a human-subjects study, in which 34 participants judged synthetically generated cluster patterns in 1000 scatterplots. We generated these patterns by carefully varying the free parameters of a simple Gaussian Mixture Model with two components. and asked the participants to count the number of clusters they could see (1 or more than 1). Based on the results, we form ClustMe by selecting the model that best predicts these human judgments among 7 different state-of-the-art merging techniques (DEMP). To quantitatively evaluate ClustMe, we conducted a second study, in which 31 human subjects ranked 435 pairs of scatterplots of real and synthetic data in terms of cluster patterns complexity. We use this data to compare ClustMe's performance to 4 other state-of-the-art clustering measures, including the well-known Clumpiness scagnostics. We found that of all measures, ClustMe is in strongest agreement with the human rankings.Item Visual Analysis of Charge Flow Networks for Complex Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kottravel, Sathish; Falk, Martin; Bin Masood, Talha; linares, mathieu; Hotz, Ingrid; Gleicher, Michael and Viola, Ivan and Leitte, HeikeIn the field of organic electronics, understanding complex material morphologies and their role in efficient charge transport in solar cells is extremely important. Related processes are studied using the Ising model and Kinetic Monte Carlo simulations resulting in large ensembles of stochastic trajectories. Naive visualization of these trajectories, individually or as a whole, does not lead to new knowledge discovery through exploration. In this paper, we present novel visualization and exploration methods to analyze this complex dynamic data, which provide succinct and meaningful abstractions leading to scientific insights. We propose a morphology abstraction yielding a network composed of material pockets and the interfaces, which serves as backbone for the visualization of the charge diffusion. The trajectory network is created using a novel way of implicitly attracting the trajectories to the skeleton of the morphology relying on a relaxation process. Each individual trajectory is then represented as a connected sequence of nodes in the skeleton. The final network summarizes all of these sequences in a single aggregated network. We apply our method to three different morphologies and demonstrate its suitability for exploring this kind of data.
- «
- 1 (current)
- 2
- 3
- »