Efficient Max-Norm Distance Computation and Reliable Voxelization

Loading...
Thumbnail Image
Date
2003
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We present techniques to efficiently compute the distance under max-norm between a point and a wide class of geometric primitives. We formulate the distance computation as an optimization problem and use this framework to design efficient algorithms for convex polytopes, algebraic primitives and triangulated models. We extend them to handle large models using bounding volume hierarchies, and use rasterization hardware followed by local refinement for higher-order primitives. We use the max-norm distance computation algorithm to design a reliable voxel-intersection test to determine whether the surface of a primitive intersects a voxel.We use this test to perform reliable voxelization of solids and generate adaptive distance fields that provides a Hausdorff distance guarantee between the boundary of the original primitives and the reconstructed surface.
Description

        
@inproceedings{
:10.2312/SGP/SGP03/116-126
, booktitle = {
Eurographics Symposium on Geometry Processing
}, editor = {
Leif Kobbelt and Peter Schroeder and Hugues Hoppe
}, title = {{
Efficient Max-Norm Distance Computation and Reliable Voxelization
}}, author = {
Varadhan, Gokul
and
Krishnan, Shankar
and
Kim, Young J.
and
Diggavi, Suhas
and
Manocha, Dinesh
}, year = {
2003
}, publisher = {
The Eurographics Association
}, ISSN = {
1727-8384
}, ISBN = {
3-905673-06-1
}, DOI = {
/10.2312/SGP/SGP03/116-126
} }
Citation