Instantaneous Visual Analysis of Blood Flow in Stenoses Using Morphological Similarity

dc.contributor.authorEulzer, Pepeen_US
dc.contributor.authorRichter, Kevinen_US
dc.contributor.authorHundertmark, Annaen_US
dc.contributor.authorWickenhoefer, Ralphen_US
dc.contributor.authorKlingner, Carstenen_US
dc.contributor.authorLawonn, Kaien_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorArchambault, Danielen_US
dc.contributor.editorBujack, Roxanaen_US
dc.date.accessioned2024-05-21T08:17:40Z
dc.date.available2024-05-21T08:17:40Z
dc.date.issued2024
dc.description.abstractThe emergence of computational fluid dynamics (CFD) enabled the simulation of intricate transport processes, including flow in physiological structures, such as blood vessels. While these so-called hemodynamic simulations offer groundbreaking opportunities to solve problems at the clinical forefront, a successful translation of CFD to clinical decision-making is challenging. Hemodynamic simulations are intrinsically complex, time-consuming, and resource-intensive, which conflicts with the timesensitive nature of clinical workflows and the fact that hospitals usually do not have the necessary resources or infrastructure to support CFD simulations. To address these transfer challenges, we propose a novel visualization system which enables instant flow exploration without performing on-site simulation. To gain insights into the viability of the approach, we focus on hemodynamic simulations of the carotid bifurcation, which is a highly relevant arterial subtree in stroke diagnostics and prevention. We created an initial database of 120 high-resolution carotid bifurcation flow models and developed a set of similarity metrics used to place a new carotid surface model into a neighborhood of simulated cases with the highest geometric similarity. The neighborhood can be immediately explored and the flow fields analyzed.We found that if the artery models are similar enough in the regions of interest, a new simulation leads to coinciding results, allowing the user to circumvent individual flow simulations. We conclude that similarity-based visual analysis is a promising approach toward the usability of CFD in medical practice.en_US
dc.description.number3
dc.description.sectionheadersMedical Visualization
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume43
dc.identifier.doi10.1111/cgf.15081
dc.identifier.issn1467-8659
dc.identifier.pages13 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.15081
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf15081
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Scientific visualization; Interactive systems and tools; Applied computing → Life and medical sciences
dc.subjectHuman centered computing → Scientific visualization
dc.subjectInteractive systems and tools
dc.subjectApplied computing → Life and medical sciences
dc.titleInstantaneous Visual Analysis of Blood Flow in Stenoses Using Morphological Similarityen_US
Files
Original bundle
Now showing 1 - 3 of 3
No Thumbnail Available
Name:
v43i3_06_cgf15081.pdf
Size:
807.77 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1104-i7.pdf
Size:
426.23 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1104-i8.mp4
Size:
85.88 MB
Format:
Video MP4
Collections