Differential Gene Expression Analysis with Visual Analytics
dc.contributor.author | Fortunato, Francesco | en_US |
dc.contributor.author | Santaroni, Cristian | en_US |
dc.contributor.author | Blasilli, Graziano | en_US |
dc.contributor.author | Fiscon, Giulia | en_US |
dc.contributor.author | Lenti, Simone | en_US |
dc.contributor.author | Santucci, Giuseppe | en_US |
dc.contributor.editor | Diehl, Alexandra | en_US |
dc.contributor.editor | Kucher, Kostiantyn | en_US |
dc.contributor.editor | Médoc, Nicolas | en_US |
dc.date.accessioned | 2025-05-26T06:54:49Z | |
dc.date.available | 2025-05-26T06:54:49Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Differential gene expression (DGE) analysis is one of the most used techniques for RNA-seq data analysis, and it is applied in various medical and biological contexts, including biomarkers for diagnosis and prognosis and evaluation of the effectiveness of specific treatments. The conduction of a DGE analysis typically involves navigating a complex, multi-step pipeline, which usually requires proficiency in programming languages like R. This presents a barrier to researchers like biologists and clinicians, who may have limited or no coding skills, and adds additional overhead even for experienced bioinformaticians. To overcome these challenges, we propose a preliminary visual analytics prototype that simplifies DGE analysis, enabling users to perform the analyses without coding expertise. | en_US |
dc.description.sectionheaders | Posters | |
dc.description.seriesinformation | EuroVis 2025 - Posters | |
dc.identifier.doi | 10.2312/evp.20251126 | |
dc.identifier.isbn | 978-3-03868-286-8 | |
dc.identifier.pages | 3 pages | |
dc.identifier.uri | https://doi.org/10.2312/evp.20251126 | |
dc.identifier.uri | https://diglib.eg.org/handle/10.2312/evp20251126 | |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | CCS Concepts: Human-centered computing → Visual analytics | |
dc.subject | Human centered computing → Visual analytics | |
dc.title | Differential Gene Expression Analysis with Visual Analytics | en_US |