A New Class of Guided C2 Subdivision Surfaces Combining Good Shape with Nested Refinement

No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
© 2018 The Eurographics Association and John Wiley & Sons Ltd.
Abstract
Converting quadrilateral meshes to smooth manifolds, guided subdivision offers a way to combine the good highlight line distribution of recent G‐spline constructions with the refinability of subdivision surfaces. This avoids the complex refinement of G‐spline constructions and the poor shape of standard subdivision. Guided subdivision can then be used both to generate the surface and hierarchically compute functions on the surface. Specifically, we present a subdivision algorithm of polynomial degree bi‐6 and a curvature bounded algorithm of degree bi‐5. We prove that the common eigenstructure of this class of subdivision algorithms is determined by their guide and demonstrate that their eigenspectrum (speed of contraction) can be adjusted without harming the shape. For practical implementation, a finite number of subdivision steps can be completed by a high‐quality cap. Near irregular points this allows leveraging standard polynomial tools both for rendering of the surface and for approximately integrating functions on the surface.Converting quadrilateral meshes to smooth manifolds, guided subdivision offers a way to combine the good highlight line distribution of recent G‐spline constructions with the refinability of subdivision surfaces.This avoids the complex refinement of G‐spline constructions and the poor shape of standard subdivision. Guided subdivision can then be used both to generate the surface and hierarchically compute functions on the surface. Specifically, we present a subdivision algorithm of polynomial degree bi‐6 and a curvature bounded algorithm of degree bi‐5.
Description

        
@article{
10.1111:cgf.13313
, journal = {Computer Graphics Forum}, title = {{
A New Class of Guided C2 Subdivision Surfaces Combining Good Shape with Nested Refinement
}}, author = {
Karčiauskas, Kęstutis
and
Peters, Jörg
}, year = {
2018
}, publisher = {
© 2018 The Eurographics Association and John Wiley & Sons Ltd.
}, ISSN = {
1467-8659
}, DOI = {
10.1111/cgf.13313
} }
Citation
Collections