Fully Automated Quantification of Synaptic Locations in Multi-channel Drosophila Photoreceptor Microscopy Data

dc.contributor.authorBrence, Blazen_US
dc.contributor.authorFuchs, Joachimen_US
dc.contributor.authorHiesinger, Peter Robinen_US
dc.contributor.authorBaum, Danielen_US
dc.contributor.editorGarrison, Lauraen_US
dc.contributor.editorKrueger, Roberten_US
dc.date.accessioned2025-09-24T09:12:08Z
dc.date.available2025-09-24T09:12:08Z
dc.date.issued2025
dc.description.abstractThe workload posed by image analysis remains a major bottleneck for advances across the life sciences. To address this challenge, we have developed a fully automated workflow for processing complex 3D multi-channel microscopy images. Specifically, our workflow addresses the analysis of photoreceptor synapses in confocal images of the Drosophila melanogaster optic lobe. The workflow consists of multiple stages, combining traditional and machine learning-based approaches for image analysis and visual computing. It performs segmentation of brain regions, photoreceptor instance identification, and precise localization of synapses. The key novelty of the workflow is an automatic alignment of synapses into a cylindrical reference coordinate system, enabling comparative synaptic analysis across photoreceptors. To demonstrate the workflow's applicability, preliminary biological results and their interpretation based on 50 images are presented. While the workflow is still being improved further, here, we showcase its capacity for efficient and objective data processing for high-throughput neurobiological analyses.en_US
dc.description.sectionheadersSession 3
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicine
dc.identifier.doi10.2312/vcbm.20251254
dc.identifier.isbn978-3-03868-276-9
dc.identifier.issn2070-5786
dc.identifier.pages5 pages
dc.identifier.urihttps://doi.org/10.2312/vcbm.20251254
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/vcbm20251254
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Applied computing → Bioinformatics; Human-centered computing → Scientific visualization
dc.subjectApplied computing → Bioinformatics
dc.subjectHuman centered computing → Scientific visualization
dc.titleFully Automated Quantification of Synaptic Locations in Multi-channel Drosophila Photoreceptor Microscopy Dataen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
vcbm20251254.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
paper1028_mm.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format