RT-HDIST: Ray-Tracing Core-based Hausdorff Distance Computation

dc.contributor.authorKim, YoungWooen_US
dc.contributor.authorLee, Jaehongen_US
dc.contributor.authorKim, Duksuen_US
dc.contributor.editorChristie, Marcen_US
dc.contributor.editorPietroni, Nicoen_US
dc.contributor.editorWang, Yu-Shuenen_US
dc.date.accessioned2025-10-07T05:01:27Z
dc.date.available2025-10-07T05:01:27Z
dc.date.issued2025
dc.description.abstractThe Hausdorff distance is a fundamental metric with widespread applications across various fields. However, its computation remains computationally expensive, especially for large-scale datasets. This work targets exact point-to-point Hausdorff distance on point sets. In this work, we present RT-HDIST, the first Hausdorff distance algorithm accelerated by ray-tracing cores (RT-cores). By reformulating the Hausdorff distance problem as a series of nearest-neighbor searches and introducing a novel quantized voxel-index space, RT-HDIST achieves significant reductions in computational overhead while maintaining exact results. Extensive benchmarks demonstrate up to a two-order-of-magnitude speedup over prior state-of-the-art methods, underscoring RT-HDIST's potential for real-time and large-scale applications.en_US
dc.description.number7
dc.description.sectionheadersLines, Surfaces & Fields
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70229
dc.identifier.issn1467-8659
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70229
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70229
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies → Shape analysis; Mesh geometry models; Parallel algorithms
dc.subjectComputing methodologies → Shape analysis
dc.subjectMesh geometry models
dc.subjectParallel algorithms
dc.titleRT-HDIST: Ray-Tracing Core-based Hausdorff Distance Computationen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
cgf70229.pdf
Size:
33.49 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1100_mm1.mp4
Size:
37.79 MB
Format:
Video MP4
Collections