Probabilistic Marching Cubes

dc.contributor.authorPöthkow, Kaien_US
dc.contributor.authorWeber, Brittaen_US
dc.contributor.authorHege, Hans-Christianen_US
dc.contributor.editorH. Hauser, H. Pfister, and J. J. van Wijken_US
dc.date.accessioned2014-02-21T20:23:37Z
dc.date.available2014-02-21T20:23:37Z
dc.date.issued2011en_US
dc.description.abstractIn this paper we revisit the computation and visualization of equivalents to isocontours in uncertain scalar fields. We model uncertainty by discrete random fields and, in contrast to previous methods, also take arbitrary spatial correlations into account. Starting with joint distributions of the random variables associated to the sample locations, we compute level crossing probabilities for cells of the sample grid. This corresponds to computing the probabilities that the well-known symmetry-reduced marching cubes cases occur in random field realizations. For Gaussian random fields, only marginal density functions that correspond to the vertices of the considered cell need to be integrated. We compute the integrals for each cell in the sample grid using a Monte Carlo method. The probabilistic ansatz does not suffer from degenerate cases that usually require case distinctions and solutions of ill-conditioned problems. Applications in 2D and 3D, both to synthetic and real data from ensemble simulations in climate research, illustrate the influence of spatial correlations on the spatial distribution of uncertain isocontours.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume30en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2011.01942.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectViewing algorithmsen_US
dc.subjectI.6.8 [Simulation and Modeling]en_US
dc.subjectTypes of Simulationen_US
dc.subjectMonte Carloen_US
dc.subjectVisual G.3 [Mathematics of Computing]en_US
dc.subjectProbability and Statisticsen_US
dc.subjectProbabilistic algorithmsen_US
dc.titleProbabilistic Marching Cubesen_US
Files