CGVQM+D: Computer Graphics Video Quality Metric and Dataset

dc.contributor.authorJindal, Akshayen_US
dc.contributor.authorSadaka, Nabilen_US
dc.contributor.authorThomas, Manu Mathewen_US
dc.contributor.authorSochenov, Antonen_US
dc.contributor.authorKaplanyan, Antonen_US
dc.contributor.editorKnoll, Aaronen_US
dc.contributor.editorPeters, Christophen_US
dc.date.accessioned2025-06-20T07:33:12Z
dc.date.available2025-06-20T07:33:12Z
dc.date.issued2025
dc.description.abstractWhile existing video and image quality datasets have extensively studied natural videos and traditional distortions, the perception of synthetic content and modern rendering artifacts remains underexplored. We present a novel video quality dataset focused on distortions introduced by advanced rendering techniques, including neural supersampling, novel-view synthesis, path tracing, neural denoising, frame interpolation, and variable rate shading. Our evaluations show that existing full-reference quality metrics perform sub-optimally on these distortions, with a maximum Pearson correlation of 0.78. Additionally, we find that the feature space of pre-trained 3D CNNs aligns strongly with human perception of visual quality. We propose CGVQM, a full-reference video quality metric that significantly outperforms existing metrics while generating both per-pixel error maps and global quality scores. Our dataset and metric implementation is available at https://github.com/IntelLabs/CGVQM.en_US
dc.description.number8
dc.description.sectionheadersPerception in Motion
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70221
dc.identifier.issn1467-8659
dc.identifier.pages16 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70221
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70221
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Perception
dc.subjectComputing methodologies → Perception
dc.titleCGVQM+D: Computer Graphics Video Quality Metric and Dataseten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
cgf70221.pdf
Size:
86.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
paper1015_mm1.pdf
Size:
41.68 MB
Format:
Adobe Portable Document Format
Collections