Iterative Nonparametric Bayesian CP Decomposition for Hyperspectral Image Denoising

dc.contributor.authorLiu, Weien_US
dc.contributor.authorJiang, Kaiwenen_US
dc.contributor.authorLai, Jinzhien_US
dc.contributor.authorZhang, Xuesongen_US
dc.contributor.editorWang, Beibeien_US
dc.contributor.editorWilkie, Alexanderen_US
dc.date.accessioned2025-06-20T07:49:50Z
dc.date.available2025-06-20T07:49:50Z
dc.date.issued2025
dc.description.abstractHyperspectral image (HSI) denoising relies on exploiting the multiway correlations hidden in the clean signals to discriminate between the randomness of measurement noise. This paper proposes a self-supervised model that has a three-layer algorithmic hierarchy to iteratively quest for the tensor decomposition based representation of the underlying HSI. The outer layer takes advantage of the non-local similarity of HSI via a simple but effective k-means++ algorithm to explore the patch-level correlation and yields clusters of patches with similar tensor ranks. The middle and inner layers consist of a Bayesian Nonparametric tensor decomposition framework. The middle one employs a multiplicative Gamma process prior for the low rank tensor decomposition, and a Gaussian-Wishart prior for a more flexible exploration of the correlations among the latent factor matrices. The inner layer is responsible for the finer regression of the residual multiway correlations leaked from the upper two layers. Our scheme also provides a principled and automatic solution to several practical HSI denoising factors, such as the noise level, the model complexity and the regularization weights. Extensive experiments validate that our method outperforms state-of-the-art methods on a series of HSI denoising metrics.en_US
dc.description.sectionheadersStylization and Image Processing
dc.description.seriesinformationEurographics Symposium on Rendering
dc.identifier.doi10.2312/sr.20251193
dc.identifier.isbn978-3-03868-292-9
dc.identifier.issn1727-3463
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.2312/sr.20251193
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/sr20251193
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Image processing
dc.subjectComputing methodologies
dc.subjectImage processing
dc.titleIterative Nonparametric Bayesian CP Decomposition for Hyperspectral Image Denoisingen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sr20251193.pdf
Size:
6.6 MB
Format:
Adobe Portable Document Format