DiffQN: Differentiable Quasi-Newton Method for Elastodynamics

dc.contributor.authorCai, Youshuaien_US
dc.contributor.authorLi, Chenen_US
dc.contributor.authorSong, Haichuanen_US
dc.contributor.authorXie, Youchenen_US
dc.contributor.authorWang, ChangBoen_US
dc.contributor.editorChristie, Marcen_US
dc.contributor.editorHan, Ping-Hsuanen_US
dc.contributor.editorLin, Shih-Syunen_US
dc.contributor.editorPietroni, Nicoen_US
dc.contributor.editorSchneider, Teseoen_US
dc.contributor.editorTsai, Hsin-Rueyen_US
dc.contributor.editorWang, Yu-Shuenen_US
dc.contributor.editorZhang, Eugeneen_US
dc.date.accessioned2025-10-07T06:02:52Z
dc.date.available2025-10-07T06:02:52Z
dc.date.issued2025
dc.description.abstractWe propose DiffQN, an efficient differentiable quasi-Newton method for elastodynamics simulation, addressing the challenges of high computational cost and limited material generality in existing differentiable physics frameworks. Our approach employs a per-frame initial Hessian approximation and selectively delays Hessian updates, resulting in improved convergence and faster forward simulation compared to prior methods such as DiffPD. During backpropagation, we further reduce gradient evaluation costs by reusing prefactorized linear system solvers from the forward pass. Unlike previous approaches, our method supports a wide range of hyperelastic materials without restrictions on material energy functions, enabling the simulation of more general physical phenomena. To efficiently handle high-resolution systems with large degrees of freedom, we introduce a subspace optimization strategy that projects both forward simulation and backpropagation into a low-dimensional subspace, significantly improving computational and memory efficiency. Our subspace method can provide effective initial guesses for subsequent full-space optimization. We validate our framework on diverse applications, including system identification, initial state optimization, and facial animation, demonstrating robust performance and achieving up to 1.8× to 18.9× speedup over state-of-the-art methods.en_US
dc.description.sectionheadersPhysical Simulation
dc.description.seriesinformationPacific Graphics Conference Papers, Posters, and Demos
dc.identifier.doi10.2312/pg.20251265
dc.identifier.isbn978-3-03868-295-0
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.2312/pg.20251265
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/pg20251265
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Physical simulation
dc.subjectComputing methodologies → Physical simulation
dc.titleDiffQN: Differentiable Quasi-Newton Method for Elastodynamicsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
pg20251265.pdf
Size:
13.28 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1374_mm1.mp4
Size:
22.14 MB
Format:
Video MP4