MARV: Multiview Augmented Reality Visualisation for Exploring Rich Material Data

dc.contributor.authorGall, Alexanderen_US
dc.contributor.authorHeim, Anjaen_US
dc.contributor.authorGröller, Eduarden_US
dc.contributor.authorHeinzl, Christophen_US
dc.contributor.editorWimmer, Michaelen_US
dc.contributor.editorAlliez, Pierreen_US
dc.contributor.editorWestermann, RĂĽdigeren_US
dc.date.accessioned2025-11-07T08:33:06Z
dc.date.available2025-11-07T08:33:06Z
dc.date.issued2025
dc.description.abstractRich material data is complex, large and heterogeneous, integrating primary and secondary non-destructive testing data for spatial, spatio-temporal, as well as high-dimensional data analyses. Currently, materials experts mainly rely on conventional desktop-based systems using 2D visualisation techniques, which render respective analyses a time-consuming and mentally demanding challenge. MARV is a novel immersive visual analytics system, which makes analyses of such data more effective and engaging in an augmented reality setting. For this purpose, MARV includes three newly designed visualisation techniques: MDD Glyphs with a Skewness Kurtosis Mapper, Temporal Evolution Tracker, and Chrono Bins, facilitating interactive exploration and comparison of multidimensional distributions of attribute data from multiple time steps. A qualitative evaluation conducted with materials experts in a real-world case study demonstrates the benefits of the proposed visualisation techniques. This evaluation revealed that combining spatial and abstract data in an immersive environment improves their analytical capabilities and facilitates the identification of patterns, anomalies, as well as changes over time.en_US
dc.description.number6
dc.description.sectionheadersOriginal Article
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70150
dc.identifier.issn1467-8659
dc.identifier.pages19 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70150
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70150
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectvirtual environments
dc.subjectaugmented reality
dc.subjectvisualisation
dc.subjectscientific visualisation
dc.subjectvisual analytics
dc.subjectHuman-centred computing→Visualisation
dc.subjectVisualisation systems and tools
dc.subjectInteraction design
dc.subjectVisualisation design and evaluation methods
dc.subjectComputing methodologies→Mixed/augmented reality
dc.titleMARV: Multiview Augmented Reality Visualisation for Exploring Rich Material Dataen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08_cgf70150.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Collections