Attention-Guided Multi-scale Neural Dual Contouring

Loading...
Thumbnail Image
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
Reconstructing high-quality meshes from binary voxel data is a fundamental task in computer graphics. However, existing methods struggle with low information density and strong discreteness, making it difficult to capture complex geometry and long-range boundary features, often leading to jagged surfaces and loss of sharp details.We propose an Attention-Guided Multiscale Neural Dual Contouring (AGNDC) method to address this challenge. AGNDC refines surface reconstruction through a multi-scale framework, using a hybrid feature extractor that combines global attention and dynamic snake convolution to enhance perception of long-range and high-curvature features. A dynamic feature fusion module aligns multi-scale predictions to improve local detail continuity, while a geometric postprocessing module further refines mesh boundaries and suppresses artifacts. Experiments on the ABC dataset demonstrate the superior performance of AGNDC in both visual and quantitative metrics. It achieves a Chamfer Distance (CD×105) of 9.013 and an F-score of 0.440, significantly reducing jaggedness and improving surface smoothness.
Description

CCS Concepts: Computing methodologies → Mesh generation; Neural networks; Volumetric models

        
@inproceedings{
10.2312:pg.20251291
, booktitle = {
Pacific Graphics Conference Papers, Posters, and Demos
}, editor = {
Christie, Marc
and
Han, Ping-Hsuan
and
Lin, Shih-Syun
and
Pietroni, Nico
and
Schneider, Teseo
and
Tsai, Hsin-Ruey
and
Wang, Yu-Shuen
and
Zhang, Eugene
}, title = {{
Attention-Guided Multi-scale Neural Dual Contouring
}}, author = {
Wu, Fuli
and
Hu, Chaoran
and
Li, Wenxuan
and
Hao, Pengyi
}, year = {
2025
}, publisher = {
The Eurographics Association
}, ISBN = {
978-3-03868-295-0
}, DOI = {
10.2312/pg.20251291
} }
Citation