Smooth Mixed-Resolution GPU Volume Rendering

dc.contributor.authorBeyer, Johannaen_US
dc.contributor.authorHadwiger, Markusen_US
dc.contributor.authorMöller, Torstenen_US
dc.contributor.authorFritz, Lauraen_US
dc.contributor.editorHans-Christian Hege and David Laidlaw and Renato Pajarola and Oliver Staadten_US
dc.date.accessioned2014-01-29T17:14:37Z
dc.date.available2014-01-29T17:14:37Z
dc.date.issued2008en_US
dc.description.abstractWe propose a mixed-resolution volume ray-casting approach that enables more flexibility in the choice of downsampling positions and filter kernels, allows freely mixing volume bricks of different resolutions during rendering, and does not require modifying the original sample values. A C0-continuous function is obtained everywhere with hardware-native filtering at full speed by simply warping texture coordinates of samples in transition regions. Additionally, we propose a simple but powerful, flat texture packing scheme that supports mixing different resolution levels in a single 3D volume cache texture with a very simple and fast address translation scheme. Although this packing constrains full scalability, it enables mixing different resolution levels in GPU-based ray-casting with only a single rendering pass. We demonstrate our approach on large real-world data, obtaining a continuous scalar function and shading at brick boundaries, using single-pass ray-casting at real-time frame rates.en_US
dc.description.seriesinformationIEEE/ EG Symposium on Volume and Point-Based Graphicsen_US
dc.identifier.isbn978-3-905674-12-5en_US
dc.identifier.issn1727-8376en_US
dc.identifier.urihttps://doi.org/10.2312/VG/VG-PBG08/163-170en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.3.6 [Computer Graphics]: Graphics data structures and data typesen_US
dc.titleSmooth Mixed-Resolution GPU Volume Renderingen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
163-170.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format