Neural Shadow Art

dc.contributor.authorWang, Caoliwenen_US
dc.contributor.authorDeng, Bailinen_US
dc.contributor.authorZhang, Juyongen_US
dc.contributor.editorChristie, Marcen_US
dc.contributor.editorHan, Ping-Hsuanen_US
dc.contributor.editorLin, Shih-Syunen_US
dc.contributor.editorPietroni, Nicoen_US
dc.contributor.editorSchneider, Teseoen_US
dc.contributor.editorTsai, Hsin-Rueyen_US
dc.contributor.editorWang, Yu-Shuenen_US
dc.contributor.editorZhang, Eugeneen_US
dc.date.accessioned2025-10-07T06:03:47Z
dc.date.available2025-10-07T06:03:47Z
dc.date.issued2025
dc.description.abstractShadow art is a captivating form of sculptural expression where the projection of a sculpture in a specific direction reveals a desired shape with high precision. In this work, we introduce Neural Shadow Art, which leverages implicit occupancy function representation to significantly expand the possibilities of shadow art. This representation enables the design of high-quality, 3D-printable geometric models with arbitrary topologies at any resolution, surpassing previous voxel- and mesh-based methods. Our method provides a more flexible framework, enabling projections to match input binary images under various light directions and screen orientations, without requiring light sources to be perpendicular to the screens. Furthermore, we allow rigid transformations of the projected geometries relative to the input binary images and simultaneously optimize light directions and screen orientations to ensure that the projections closely resemble the target images, especially when dealing with inputs of complex topologies. In addition, our model promotes surface smoothness and reduces material usage. This is particularly advantageous for efficient industrial production and enhanced artistic effect by generating compelling shadow art that avoids trivial, intersecting cylindrical structures. In summary, we propose a more flexible representation for shadow art, significantly improving projection accuracy while simultaneously meeting industrial requirements and delivering awe-inspiring artistic effects.en_US
dc.description.sectionheadersFabrication & Artistic designs
dc.description.seriesinformationPacific Graphics Conference Papers, Posters, and Demos
dc.identifier.doi10.2312/pg.20251281
dc.identifier.isbn978-3-03868-295-0
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.2312/pg.20251281
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/pg20251281
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Shape modeling; Rendering; Applied computing → Fine arts
dc.subjectComputing methodologies → Shape modeling
dc.subjectRendering
dc.subjectApplied computing → Fine arts
dc.titleNeural Shadow Arten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
pg20251281.pdf
Size:
14.67 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1192_mm1.zip
Size:
37.83 MB
Format:
Zip file