Interactive High-Quality Maximum Intensity Projection

dc.contributor.authorMroz, Lukasen_US
dc.contributor.authorHauser, Helwigen_US
dc.contributor.authorGroller, Eduarden_US
dc.date.accessioned2015-02-16T09:52:33Z
dc.date.available2015-02-16T09:52:33Z
dc.date.issued2000en_US
dc.description.abstractMaximum Intensity Projection (MIP) is a volume rendering technique which is used to visualize high-intensity structures within volumetric data. At each pixel the highest data value, which is encountered along a corresponding viewing ray is depicted. MIP is, for example, commonly used to extract vascular structures from medical data sets (angiography). Due to lack of depth information in MIP images, animation or interactive variation of viewing parameters is frequently used for investigation. Up to now no MIP algorithms exist which are of both interactive speed and high quality. In this paper we present a high-quality MIP algorithm (trilinear interpolation within cells), which is up to 50 times faster than brute-force MIP and at least 20 times faster than comparable optimized techniques. This speed-up is accomplished by using an alternative storage scheme for volume cells (sorted by value) and by removing cells which do not contribute to any MIP projection (regardless of the viewing direction) in a preprocessing step. Also, a fast maximum estimation within cells is used to further speed up the algorithm.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume19en_US
dc.identifier.doi10.1111/1467-8659.00426en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages341-350en_US
dc.identifier.urihttps://doi.org/10.1111/1467-8659.00426en_US
dc.publisherBlackwell Publishers Ltd and the Eurographics Associationen_US
dc.titleInteractive High-Quality Maximum Intensity Projectionen_US
Files
Collections