• Login
    View Item 
    •   Eurographics DL Home
    • Eurographics Workshops and Symposia
    • VCBM: Eurographics Workshop on Visual Computing for Biomedicine
    • VCBM 2020: Eurographics Workshop on Visual Computing for Biology and Medicine
    • View Item
    •   Eurographics DL Home
    • Eurographics Workshops and Symposia
    • VCBM: Eurographics Workshop on Visual Computing for Biomedicine
    • VCBM 2020: Eurographics Workshop on Visual Computing for Biology and Medicine
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uncertainty-aware Brain Lesion Visualization

    Thumbnail
    View/Open
    097-101.pdf (1.356Mb)
    Date
    2020
    Author
    Gillmann, Christina
    Saur, Dorothee
    Wischgoll, Thomas
    Hoffmann, Karl-Titus
    Hagen, Hans
    Maciejewski, Ross
    Scheuermann, Gerik ORCID
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    A brain lesion is an area of tissue that has been damaged through injury or disease. Its analysis is an essential task for medical researchers to understand diseases and find proper treatments. In this context, visualization approaches became an important tool to locate, quantify, and analyze brain lesions. Unfortunately, image uncertainty highly effects the accuracy of the visualization output. These effects are not covered well in existing approaches, leading to miss-interpretation or a lack of trust in the analysis result. In this work, we present an uncertainty-aware visualization pipeline especially designed for brain lesions. Our method is based on an uncertainty measure for image data that forms the input of an uncertainty-aware segmentation approach. Here, medical doctors can determine the lesion in the patient's brain and the result can be visualized by an uncertainty-aware geometry rendering. We applied our approach to two patient datasets to review the lesions. Our results indicate increased knowledge discovery in brain lesion analysis that provides a quantification of trust in the generated results.
    BibTeX
    @inproceedings {10.2312:vcbm.20201176,
    booktitle = {Eurographics Workshop on Visual Computing for Biology and Medicine},
    editor = {Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata Georgia},
    title = {{Uncertainty-aware Brain Lesion Visualization}},
    author = {Gillmann, Christina and Saur, Dorothee and Wischgoll, Thomas and Hoffmann, Karl-Titus and Hagen, Hans and Maciejewski, Ross and Scheuermann, Gerik},
    year = {2020},
    publisher = {The Eurographics Association},
    ISSN = {2070-5786},
    ISBN = {978-3-03868-109-0},
    DOI = {10.2312/vcbm.20201176}
    }
    URI
    https://doi.org/10.2312/vcbm.20201176
    https://diglib.eg.org:443/handle/10.2312/vcbm20201176
    Collections
    • VCBM 2020: Eurographics Workshop on Visual Computing for Biology and Medicine

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA