Show simple item record

dc.contributor.authorHuber, Markusen_US
dc.contributor.authorEberhardt, Bernharden_US
dc.contributor.authorWeiskopf, Danielen_US
dc.contributor.editorMichael Bronstein and Jean Favre and Kai Hormannen_US
dc.description.abstractWe present a robust and efficient method for the two-way coupling between particle-based fluid simulations and infinitesimally thin solids represented by triangular meshes. Our approach is based on a hybrid method that combines a repulsion force approach with a continuous intersection handling to guarantee that no penetration occurs. Moreover, boundary conditions for the tangential component of the fluids velocity are implemented to model the no-slip boundary condition. The proposed method is particularly useful for dynamic surfaces, like cloth and thin shells. In addition, we demonstrate how standard fluid surface reconstruction algorithms can be modified to prevent the calculated surface from intersecting close objects. We have implemented our approach for the bidirectional interaction between liquid simulations based on Smoothed Particle Hydrodynamics (SPH) and standard mesh-based cloth simulation systems.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]en_US
dc.subjectThree Dimensional Graphics and Realismen_US
dc.titleCloth-Fluid Contacten_US
dc.description.seriesinformationVision, Modeling & Visualizationen_US

Files in this item


This item appears in the following Collection(s)

  • VMV13
    ISBN 978-3-905674-51-4

Show simple item record