• Login
    View Item 
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generating 3D Faces using Multi-column Graph Convolutional Networks

    Thumbnail
    View/Open
    v38i7pp215-224.pdf (4.808Mb)
    Date
    2019
    Author
    Li, Kun
    Liu, Jingying
    Lai, Yu-Kun
    Yang, Jingyu
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    In this work, we introduce multi-column graph convolutional networks (MGCNs), a deep generative model for 3D mesh surfaces that effectively learns a non-linear facial representation. We perform spectral decomposition of meshes and apply convolutions directly in the frequency domain. Our network architecture involves multiple columns of graph convolutional networks (GCNs), namely large GCN (L-GCN), medium GCN (M-GCN) and small GCN (S-GCN), with different filter sizes to extract features at different scales. L-GCN is more useful to extract large-scale features, whereas S-GCN is effective for extracting subtle and fine-grained features, and M-GCN captures information in between. Therefore, to obtain a high-quality representation, we propose a selective fusion method that adaptively integrates these three kinds of information. Spatially non-local relationships are also exploited through a self-attention mechanism to further improve the representation ability in the latent vector space. Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D face reconstruction. Moreover, with the help of variational inference, our model has excellent generating ability.
    BibTeX
    @article {10.1111:cgf.13830,
    journal = {Computer Graphics Forum},
    title = {{Generating 3D Faces using Multi-column Graph Convolutional Networks}},
    author = {Li, Kun and Liu, Jingying and Lai, Yu-Kun and Yang, Jingyu},
    year = {2019},
    publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
    ISSN = {1467-8659},
    DOI = {10.1111/cgf.13830}
    }
    URI
    https://doi.org/10.1111/cgf.13830
    https://diglib.eg.org:443/handle/10.1111/cgf13830
    Collections
    • 38-Issue 7

    Eurographics Association copyright © 2013 - 2022 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2022 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA