• Login
    View Item 
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 36 (2017)
    • 36-Issue 6
    • View Item
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 36 (2017)
    • 36-Issue 6
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Time‐Continuous Quasi‐Monte Carlo Ray Tracing

    Thumbnail
    View/Open
    v36i6pp354-367.pdf (3.075Mb)
    Date
    2017
    Author
    Gribel, C.J.
    Akenine‐Möller, T.
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    Domain‐continuous visibility determination algorithms have proved to be very efficient at reducing noise otherwise prevalent in stochastic sampling. Even though they come with an increased overhead in terms of geometrical tests and visibility information management, their analytical nature provides such a rich integral that the pay‐off is often worth it. This paper presents a time‐continuous, primary visibility algorithm for motion blur aimed at ray tracing. Two novel intersection tests are derived and implemented. The first is for ray versus moving triangle and the second for ray versus moving AABB intersection. A novel take on shading is presented as well, where the time continuum of visible geometry is adaptively point‐sampled. Static geometry is handled using supplemental stochastic rays in order to reduce spatial aliasing. Finally, a prototype ray tracer with a full time‐continuous traversal kernel is presented in detail. The results are based on a variety of test scenarios and show that even though our time‐continuous algorithm has limitations, it outperforms multi‐jittered quasi‐Monte Carlo ray tracing in terms of image quality at equal rendering time, within wide sampling rate ranges. Domain‐continuous visibility determination algorithms have proved to be very efficient at reducing noise otherwise prevalent in stochastic sampling. Even though they come with an increased overhead in terms of geometrical tests and visibility information management, their analytical nature provides such a rich integral that the pay‐off is often worth it. This paper presents a time‐continuous, primary visibility algorithm for motion blur aimed at ray tracing.
    BibTeX
    @article {10.1111:cgf.12985,
    journal = {Computer Graphics Forum},
    title = {{Time‐Continuous Quasi‐Monte Carlo Ray Tracing}},
    author = {Gribel, C.J. and Akenine‐Möller, T.},
    year = {2017},
    publisher = {© 2017 The Eurographics Association and John Wiley & Sons Ltd.},
    ISSN = {1467-8659},
    DOI = {10.1111/cgf.12985}
    }
    URI
    http://dx.doi.org/10.1111/cgf.12985
    https://diglib.eg.org:443/handle/10.1111/cgf12985
    Collections
    • 36-Issue 6

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA