• Login
    View Item 
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 35 (2016)
    • 35-Issue 1
    • View Item
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 35 (2016)
    • 35-Issue 1
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Robust Cardiac Function Assessment in 4D PC‐MRI Data of the Aorta and Pulmonary Artery

    Thumbnail
    View/Open
    v35i1pp032-043.pdf (4.784Mb)
    Date
    2016
    Author
    Köhler, Benjamin
    Preim, Uta
    Grothoff, Matthias
    Gutberlet, Matthias
    Fischbach, Katharina
    Preim, Bernhard ORCID
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered. This often leads to physiologically implausible results. In this work, a robust quantification method is introduced to overcome this problem. Collaborating radiologists and cardiologists were carefully observed while estimating SVs and RFs in various healthy volunteer and patient 4D PC‐MRI data sets with conventional quantification methods, that is, using a single plane above the valve that is freely movable along the centerline. By default it is aligned perpendicular to the vessel's centerline, but free angulation (rotation) is possible. This facilitated the automation of their approach which, in turn, allows to derive statistical information about the plane angulation sensitivity. Moreover, the experts expect a continuous decrease of the blood flow volume along the vessel course. Conventional methods are often unable to produce this behaviour. Thus, we present a procedure to fit a monotonous function that ensures such physiologically plausible results. In addition, this technique was adapted for the usage in branching vessels such as the pulmonary artery. The performed informal evaluation shows the capability of our method to support diagnosis; a parameter evaluation confirms the robustness. Vortex flow was identified as one of the main causes for quantification uncertainties.Four‐dimensional phase‐contrast magnetic resonance imaging (4D PC‐MRI) allows the non‐invasive acquisition of time‐resolved, 3D blood flow information. Stroke volumes (SVs) and regurgitation fractions (RFs) are two of the main measures to assess the cardiac function and severity of valvular pathologies. The flow rates in forward and backward direction through a plane above the aortic or pulmonary valve are required for their quantification. Unfortunately, the calculations are highly sensitive towards the plane's angulation since orthogonally passing flow is considered.
    BibTeX
    @article {10.1111:cgf.12669,
    journal = {Computer Graphics Forum},
    title = {{Robust Cardiac Function Assessment in 4D PC‐MRI Data of the Aorta and Pulmonary Artery}},
    author = {Köhler, Benjamin and Preim, Uta and Grothoff, Matthias and Gutberlet, Matthias and Fischbach, Katharina and Preim, Bernhard},
    year = {2016},
    publisher = {Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd.},
    DOI = {10.1111/cgf.12669}
    }
    URI
    http://dx.doi.org/10.1111/cgf.12669
    https://diglib.eg.org:443/handle/10
    Collections
    • 35-Issue 1

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA