SCA 12: Eurographics/SIGGRAPH Symposium on Computer Animation
Permanent URI for this collection
Browse
Browsing SCA 12: Eurographics/SIGGRAPH Symposium on Computer Animation by Subject "Computational Geometry and Object Modeling"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Faster Acceleration Noise for Multibody Animations using Precomputed Soundbanks(The Eurographics Association, 2012) Chadwick, Jeffrey N.; Zheng, Changxi; James, Doug L.; Jehee Lee and Paul KryWe introduce an efficient method for synthesizing rigid-body acceleration noise for complex multibody scenes. Existing acceleration noise synthesis methods for animation require object-specific precomputation, which is prohibitively expensive for scenes involving rigid-body fracture or other sources of small, procedurally generated debris. We avoid precomputation by introducing a proxy-based method for acceleration noise synthesis in which precomputed acceleration noise data is only generated for a small set of ellipsoidal proxies and stored in a proxy soundbank. Our proxy model is shown to be effective at approximating acceleration noise from scenes with lots of small debris (e.g., pieces produced by rigid-body fracture). This approach is not suitable for synthesizing acceleration noise from larger objects with complicated non-convex geometry; however, it has been shown in previous work that acceleration noise from objects such as these tends to be largely masked by modal vibration sound. We manage the cost of our proxy soundbank with a new wavelet-based compression scheme for acceleration noise and use our model to significantly improve sound synthesis results for several multibody animations.Item Linear-Time Smoke Animation with Vortex Sheet Meshes(The Eurographics Association, 2012) Brochu, Tyson; Keeler, Todd; Bridson, Robert; Jehee Lee and Paul KryWe present the first quality physics-based smoke animation method which runs in time approximately linear in the size of the rendered two-dimensional visual detail. Our fundamental representation is a closed triangle mesh surface dividing space between clear air and a uniformly smoky region, on which we compute vortex sheet dynamics to accurately solve inviscid buoyant flow. We handle arbitrary moving no-stick solid boundaries and by default handle an infinite domain. The simulation itself runs in time linear to the number of triangles thanks to the use of a well-conditioned integral equation treatment together with a Fast Multipole Method for linear-time summations, providing excellent performance. Basic zero-albedo smoke rendering, with embedded solids, is easy to implement for interactive rates, and the mesh output can also serve as an extremely compact and detailed input to more sophisticated volume rendering.Item Long Range Attachments - A Method to Simulate Inextensible Clothing in Computer Games(The Eurographics Association, 2012) Kim, Tae-Yong; Chentanez, Nuttapong; Müller-Fischer, Matthias; Jehee Lee and Paul KryInextensibility is one of the most fundamental properties of cloth. Existing approaches to handle inextensibility often require solving global non-linear systems and remain computationally expensive for computer game uses. Real time performance can be achieved by allowing damping or stretching at reduced solver costs, but these compromise visual realism - the cloth either looks stretchy or fine wrinkles get lost. Our long range attachment (LRA) method exploits that typical game character clothing tends to be attached to some kinematic parts of the character. LRA method applies unilateral distance constraint between free particles of the cloth to distant attachment point on the character, preventing them from stretching away from the kinematically driven attachments (e.g. shoulder for a cape). This simple step provides an efficient shortcut for enforcing global inextensibility that can be readily implemented into existing game physics methods such as PBD.Item Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes(The Eurographics Association, 2012) Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J. Andreas; Bridson, Robert; Jehee Lee and Paul KryIn this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method.Item Smoke Sheets for Graph-Structured Vortex Filaments(The Eurographics Association, 2012) Barnat, Alfred; Pollard, Nancy S.; Jehee Lee and Paul KrySmoke is one of the core phenomena which fluid simulation techniques in computer graphics have attempted to capture. It is both well understood mathematically and important in lending realism to computer generated effects. In an attempt to overcome the diffusion inherent to Eulerian grid-based simulators, a technique has recently been developed which represents velocity using a sparse set of vortex filaments. This has the advantage of providing an easily understandable and controllable model for fluid velocity, but is computationally expensive because each filament affects the fluid velocity over an unbounded region of the simulation space. We present an alternative to existing techniques which merge adjacent filament rings, instead allowing filaments to form arbitrary structures, and we develop a new set of reconnection criteria to take advantage of this filament graph. To complement this technique, we also introduce a method for smoke surface tracking and rendering designed to minimize the number of sample points without introducing excessive diffusion or blurring. Though this representation lends itself to straightforward real-time rendering, we also present a method which renders the thin sheets and curls of smoke as diffuse volumes using any GPU capable of supporting geometry shaders.