Browsing by Author "Speckmann, Bettina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Quantitative Comparison of Time-Dependent Treemaps(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vernier, Eduardo; Sondag, Max; Comba, João; Speckmann, Bettina; Telea, Alexandru; Verbeek, Kevin; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaRectangular treemaps are often the method of choice to visualize large hierarchical datasets. Nowadays such datasets are available over time, hence there is a need for (a) treemaps that can handle time-dependent data, and (b) corresponding quality criteria that cover both a treemap's visual quality and its stability over time. In recent years a wide variety of (stable) treemapping algorithms has been proposed, with various advantages and limitations. We aim to provide insights to researchers and practitioners to allow them to make an informed choice when selecting a treemapping algorithm for specific applications and data. To this end, we perform an extensive quantitative evaluation of rectangular treemaps for time-dependent data. As part of this evaluation we propose a novel classification scheme for time-dependent datasets. Specifically, we observe that the performance of treemapping algorithms depends on the characteristics of the datasets used. We identify four potential representative features that characterize time-dependent hierarchical datasets and classify all datasets used in our experiments accordingly. We experimentally test the validity of this classification on more than 2000 datasets, and analyze the relative performance of 14 state-of-the-art rectangular treemapping algorithms across varying features. Finally, we visually summarize our results with respect to both visual quality and stability to aid users in making an informed choice among treemapping algorithms. All datasets, metrics, and algorithms are openly available to facilitate reuse and further comparative studies.Item Robust Construction of Polycube Segmentations via Dual Loops(The Eurographics Association and John Wiley & Sons Ltd., 2025) Snoep, Maxim; Speckmann, Bettina; Verbeek, Kevin; Attene, Marco; Sellán, SilviaPolycube segmentations for 3D models effectively support a wide variety of applications such as seamless texture mapping, spline fitting, structured multi-block grid generation, and hexahedral mesh construction. However, the automated construction of valid polycube segmentations suffers from robustness issues: state-of-the-art methods are not guaranteed to find a valid solution. In this paper we present DualCube: an iterative algorithm which is guaranteed to return a valid polycube segmentation for 3D models of any genus. Our algorithm is based on a dual representation of polycubes. Starting from an initial simple polycube of the correct genus, together with the corresponding dual loop structure and polycube segmentation, we iteratively refine the polycube, loop structure, and segmentation, while maintaining the correctness of the solution. DualCube is robust by construction: at any point during the iterative process the current segmentation is valid. Its iterative nature furthermore facilitates a seamless trade-off between quality and complexity of the solution. DualCube can be implemented using comparatively simple algorithmic building blocks; our experimental evaluation establishes that the quality of our polycube segmentations is on par with, or exceeding, the state-of-the-art.