Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Xiao"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Single Image Surface Appearance Modeling with Self-augmented CNNs and Inexact Supervision
    (The Eurographics Association and John Wiley & Sons Ltd., 2018) Ye, Wenjie; Li, Xiao; Dong, Yue; Peers, Pieter; Tong, Xin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, Johannes
    This paper presents a deep learning based method for estimating the spatially varying surface reflectance properties from a single image of a planar surface under unknown natural lighting trained using only photographs of exemplar materials without referencing any artist generated or densely measured spatially varying surface reflectance training data. Our method is based on an empirical study of Li et al.'s [LDPT17] self-augmentation training strategy that shows that the main role of the initial approximative network is to provide guidance on the inherent ambiguities in single image appearance estimation. Furthermore, our study indicates that this initial network can be inexact (i.e., trained from other data sources) as long as it resolves the inherent ambiguities. We show that the single image estimation network trained without manually labeled data outperforms prior work in terms of accuracy as well as generality.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback