Browsing by Author "Malomo, Luigi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Automatic Design of Cable‐Tensioned Glass Shells(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Laccone, Francesco; Malomo, Luigi; Froli, Maurizio; Cignoni, Paolo; Pietroni, Nico; Benes, Bedrich and Hauser, HelwigWe propose an optimization algorithm for the design of post‐tensioned architectural shell structures, composed of triangular glass panels, in which glass has a load‐bearing function. Due to its brittle nature, glass can fail when it is subject to tensile forces. Hence, we enrich the structure with a cable net, which is specifically designed to post‐tension the shell, relieving the underlying glass structure from tension. We automatically derive an optimized cable layout, together with the appropriate pre‐load of each cable. The method is driven by a physically based static analysis of the shell subject to its service load. We assess our approach by applying non‐linear finite element analysis to several real‐scale application scenarios. Such a method of cable tensioning produces glass shells that are optimized from the material usage viewpoint since they exploit the high compression strength of glass. As a result, they are lightweight and robust. Both aesthetic and static qualities are improved with respect to grid shell competitors.Item Computational Design of Fabricable Geometric Patterns(The Eurographics Association, 2023) Scandurra, Elena; Laccone, Francesco; Malomo, Luigi; Callieri, Marco; Cignoni, Paolo; Giorgi, Daniela; Banterle, Francesco; Caggianese, Giuseppe; Capece, Nicola; Erra, Ugo; Lupinetti, Katia; Manfredi, GildaThis paper addresses the design of surfaces as assemblies of geometric patterns with predictable performance in response to mechanical stimuli. We design a family of tileable and fabricable patterns represented as triangle meshes, which can be assembled for creating surface tessellations. First, a regular recursive subdivision of the planar space generates different geometric configurations for candidate patterns, having interesting and varied aesthetic properties. Then, a refinement step addresses manufacturability by solving for non-manifold configurations and sharp angles which would produce disconnected or fragile patterns. We simulate our patterns to evaluate their mechanical response when loaded in different scenarios targeting out-of-plane bending. Through a simple browsing interface, we show that our patterns span a variety of different bending behaviors. The result is a library of patterns with varied aesthetics and predefined mechanical behavior, to use for the direct design of mechanical metamaterials. To assess the feasibility of our approach, we show a pair of fabricated 3D objects with different curvatures.Item State of the Art on Stylized Fabrication(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Bickel, Bernd; Cignoni, Paolo; Malomo, Luigi; Pietroni, Nico; Chen, Min and Benes, BedrichDigital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state‐of‐the‐art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research.Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state‐of‐the‐art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research.