
High-Performance Graphics 2021
N. Binder and T. Ritschel
(Guest Editors)

Volume 40 (2021), Number 8

Cooperative Profile Guided Optimizations

Mark Stephenson Ram Rangan Stephen W. Keckler
mstephenson@nvidia.com rrangan@nvidia.com skeckler@nvidia.com

Abstract
Existing feedback-driven optimization frameworks are not suitable for video games, which tend to push the limits of perfor-
mance of gaming platforms and have real-time constraints that preclude all but the simplest execution profiling. While Profile
Guided Optimization (PGO) is a well-established optimization approach, existing PGO techniques are ill-suited for games for
a number of reasons, particularly because heavyweight profiling makes interactive applications unresponsive. Adaptive op-
timization frameworks continually collect metrics that guide code specialization optimizations during program execution but
have similarly high overheads. We emulate a system, which we call Cooperative PGO, in which the gaming platform collects
piecemeal profiles by sampling in both time and space during actual gameplay across many users; stitches the piecemeal pro-
files together statistically; and creates policies to guide future gameplay. We introduce a three-level hierarchical profiler that
is well-suited to graphics APIs, that commonly operates with no overhead and occasionally introduces an average overhead of
less than 0.5% during periods of active profiling. This paper examines the practicality of Cooperative PGO using three PGOs
as case studies. A PGO that exploits likely zeros is particularly effective, achieving an average speedup of 5%, with a maximum
speedup of 15%, over a highly-tuned baseline.

CCS Concepts
• Software and its engineering → Compilers; • Computer systems organization → Cloud computing;

1. Introduction

As Moore’s Law comes to an end, runtime systems and code spe-
cialization will play an increasing role in boosting the performance
of graphics processing units (GPUs). Profile-guided and adaptive
optimizations are related techniques that can potentially specialize
graphics shaders for likely runtime characteristics. Profile-guided
optimization (PGO) relies on an offline profiling phase in which a
developer uses representative training inputs to discover likely run-
time behaviors. Because PGO profiling occurs offline, the compiler
can aggressively instrument an application to collect a varied set of
run-time behaviors from basic-block execution frequencies to value
profiles. While PGO has been shown to be effective and has no run-
time overheads, it has four significant shortcomings that have hin-
dered widespread usage, particularly for interactive gaming appli-
cations: (1) PGO complicates the compilation process by requiring
two compilation and link steps, along with a potentially lengthy of-
fline profiling phase. (2) PGO’s generalization success (i.e., how a
PGO-compiled application behaves in the wild) depends heavily on
the inputs used during the profiling phase. (3) Wholesale profiling
of the kind typically used for PGO makes interacting with inter-
active applications, including games, difficult. (4) Code patches to
either a game or the GPU driver, both of which are frequent, can
invalidate prior profiles.

Adaptive optimization (AO) does not have PGO’s generalization
shortcomings because it transparently specializes code during pro-
gram execution and therefore achieves generality by dynamically

Figure 1: High-level operation of Cooperative PGO in a gam-
ing cloud (e.g. NVIDIA’s GeForce NOW). Direct3D clients collect
piecemeal profiles, which a centralized server aggregates to create
actionable, complete profiles of games.

optimizing for any possible execution profile. However, the over-
heads associated with profiling and code re-compilation must be
minimized for AO to be worthwhile. Expensive profiling and fre-
quent re-compilations can negate the benefits of AO. Furthermore,
the tight feedback loop required for adaptive optimizations is sub-
ject to oscillation in programs with phases [AFG∗05].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14382

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1350-0165
https://orcid.org/0000-0003-4191-4151
https://orcid.org/0000-0001-6701-6099
https://doi.org/10.1111/cgf.14382

Stephenson, Rangan, & Keckler / Cooperative PGO

In this paper we present Cooperative PGO, which is a middle
ground between PGO and AO. The key insight that enables Cooper-
ative PGO is that millions of gamers play the same, finite, and small
set of games on the same, finite, and small set of GPUs and con-
soles. Unlike AO which must aggressively profile and re-compile
code, Cooperative PGO clients infrequently collect small, piece-
meal profiles as Figure 1 shows. Therefore, the run-time overhead
of Cooperative PGO is extremely low. Because Cooperative PGO
clients collect piecemeal profiles across frames of a gaming appli-
cation, it can take tens of thousands of profiles to create a complete
profile of a program’s execution. As we argue in this paper, with
a large community of gamers Cooperative PGO can quickly cover
large profiling spaces. Some tech experts predict that cloud-based
gaming such as GeForce NOW, Stadia, and Luna, will increase
in popularity [D’A20]. With millions of gamers playing games on
consolidated hardware, cloud-based gaming is the ideal target for
Cooperative PGO.

Cooperative PGO, like AO, works best in the context of a
just-in-time compiling virtual machine since it relies on dynami-
cally creating instrumented program variants for collecting profil-
ing data. Graphics languages, such as Direct3D’s HLSL [Mic18b]
and Vulkan’s GLSL [KBR17], are just-in-time compiled and well-
suited for Cooperative PGO. Like AO, the profiling and re-
compilation required by Cooperative PGO are seamless and im-
pose no additional burden on developers. Like PGO, Cooperative
PGO uses previously collected run-time profiles to guide future
compiles. However, developers do not have to guess what inputs
are representative for their applications with Cooperative PGO.

Finally, given that a Cooperative PGO system stitches together
piecemeal profiles spanning game scenes, levels, and users, the ag-
gregated whole-program profile is an approximation and may even
have internal inconsistencies (e.g., the sum of incoming and out-
going execution weights through parts of a control flow graph may
not match). We show that Cooperative PGO can gainfully leverage
approximate profiles to improve gaming performance with three
candidate PGOs.

In this paper, we focus on demonstrating the viability of Coop-
erative PGO by emulating it in a modified production driver on a
non-distributed research prototype (i.e., a single-node system). Be-
fore concluding, in Section 7, we outline the steps required to en-
gineer a fully distributed Cooperative PGO system, which we will
pursue as future work. Our paper’s main contributions are:

• A description of a Cooperative PGO system’s main compo-
nents, including a novel hierarchical profiler that is well suited
to graphics APIs.
• Characterization of the data collection abilities of Cooperative

PGO as a function of sampling rate and gaming population size.
• Characterization of the overhead of profiling using a production-

quality driver.
• Demonstration of Cooperative PGO’s usefulness through the

evaluation of three PGOs. A PGO that optimizes for likely zero
values in the computation improves the performance of sev-
eral games scenes by an average of 5%, and achieves greater
than 10% speedups on varied scenes from two popular games.
We also evaluate a proof-of-concept, timing-based PGO that in-
creases performance by nearly 3% on average.

2. Related Work

2.1. Profile-Guided Optimizations

Profile-guided optimizations have a rich history in the literature
and many modern compilers support PGO (e.g. [Mic19c, Fre08]).
While compilers have limited support for general value profil-
ing [Fre08], control flow profiling to determine the execution
weights of various blocks of code is prevalent. Compiler passes
such as inlining, register allocation, predication, and loop unrolling
then use the execution weights to generate optimized code. For ex-
ample, a compiler can arrange code based on profile feedback to
improve instruction cache performance by packing frequently ex-
ecuted code blocks closer to each other. Execution weight based
PGOs have proven effective in a variety of programs, from general
purpose programs [CL99] to Web browsers [Chr20]. Cooperative
PGO crowdsources this proven approach to code optimization.

Value profilers have historically been run offline and have served
to guide manual or automatic software optimizations [CFE97,
MWD00,WCL17,YYL∗20,RSU∗20,SR21,ZHMC∗20]. Using of-
fline zero-value profilers, researchers have shown that dynamically
zero-valued operands can be opportunistically leveraged to perform
forward and backward slice code-specialization in gaming appli-
cations through the Zeroploit transform [RSU∗20] and automated
in a compiler with PGZ [SR21]. We consider PGZ as one of the
candidate PGOs for Cooperative PGO by employing a piecemeal
zero-value profiler.

Recently, Leobas and Pereira presented a sampling-based, low-
overhead online value profiler to dynamically optimize silent stores
in long-running loops [LP20]. Their approach samples a few iter-
ations of long-running loops to decide whether a silent store op-
portunity exists. This novel technique, which performs well for hot
loops in CPU programs, is not suitable for graphics shader pro-
grams, which typically do not have loops or at best, have loops
with small trip counts. To the best of our knowledge, our piecemeal
profiling approach in a Cooperative PGO system is the first viable
online value profiler for gaming applications.

2.2. Low Overhead and Adaptive Profiling

Multi-versioning dynamically evaluates multiple, differently com-
piled versions of the same source code and chooses the best ver-
sion at runtime [DR97,AR01,LAHC06,PCL11,LMnJC20]. Multi-
versioning inspired a PGO that we evaluate in this paper, called A-
Z (read as A-to-Z) testing, that times differently-compiled shaders
online. The key difference between our PGO and multi-versioning
is that Cooperative PGO significantly increases the number of ver-
sions that can be compared.

Any system that evaluates performance online must take care
to minimize measurement overheads. We adapt prior research on
sample-based profiling [AR01,Lib04,CMH∗13] to simultaneously
reduce overheads and better mesh with the peculiarities of com-
puter graphics. Two of the three PGOs we explore in this paper
have considerable measurement requirements and could not oper-
ate in a traditional adaptive optimization framework and meet the
realtime requirements of computer graphics. We explain later how
such profiling-intensive optimizations can be successfully tamed
with Cooperative PGO.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

72

Stephenson, Rangan, & Keckler / Cooperative PGO

2.3. Crowd Sourced Compilation and Profiling

The earliest example of a crowd sourced profiler is statistical bug
isolation [Lib04, JTLL10, LNZ∗05]. In his thesis, Liblit notes that
with millions of people all running the same application, a low
overhead, sample-based approach can be used to profile infrequent
events. By the same token, with Cooperative PGO, millions of
gamers play the same, small set of games. Even with low sam-
pling rates, the gaming community is large enough to quickly pro-
file whole games with high coverage. Liblit’s instrumented code is
compiled into the released binary, and therefore suffers some over-
head even when profiling is disabled. Similarly, Stephenson et al.’s
mainstream computing system for enforcing security constraints, is
based on crowd-sourced control flow and value profiles from in-
strumented released binaries, and unfortunately experiences slow-
downs up to three orders of magnitude greater than Cooperative
PGO [SRYVH10]. Cooperative PGO leverages just-in-time (JIT)
compiling technology, and includes a novel hierarchical sampling
approach that dramatically reduces profiling overheads.

Fursin and Temam’s collective optimization (CO) shares the
same high-level motivation as Cooperative PGO, i.e. crowd-source
runtime information to specialize a compiler to its target applica-
tion [FT11]. CO targets static compilation systems and performs
offline or install-time profiling to reduce the long training times of
iterative compilation. Cooperative PGO, on the other hand, works
in the context of a JIT and performs profile collection and aggre-
gation online, where low-overhead profiling is a requirement. Iter-
ative compilation performs compiler knob tuning, or policy search
to minimize runtimes or binary sizes. Cooperative PGO subsumes
iterative compilation by also allowing for fine-grained profile col-
lection more suited for PGO.

We end this section by drawing a distinction between gam-
ing workloads and CPU workloads, such as those considered in
prior research. Gaming workloads tend to be heavily optimized
and tuned by high-performance programmers. GPU drivers, such
as those distributed by NVIDIA and AMD perform aggressive opti-
mizations, and games are regularly patched to provide faster game-
play. Thus, our focus on gaming is a double-edged sword. Extract-
ing additional frames per second on expert-tuned software is diffi-
cult, yet the gaming market continues to significantly reward per-
formance gains.

3. Sparse Random Profiling

While our approach to sample-based profiling was inspired by Lib-
lit et al. [LNZ∗05,Lib04, JTLL10], and Arnold and Ryder [AR01],
we have adapted both the sampling strategy and instrumentation
to the particulars of computer graphics. During the rendering of a
frame, the graphics driver parlays draw and dispatch API calls to
sequences of data movement and shader program executions that
run on the GPU. Over the years as GPUs have evolved toward gen-
eral programmability, shader programs have grown substantially in
complexity and can contain large and irregular control flow graphs
(CFGs), hundreds of registers, and many thousands of instructions.

Therefore, profiling a single shader in its entirety, let alone all of
the hundreds of shaders used to render a single game frame, could

drop frame rates by unacceptable, and unplayable proportions. For
online profiling, we adopt a sparse random profiling approach.

3.1. Key Concepts

We use a three-level hierarchical random sampler as shown in Fig-
ure 2 to reduce profiling overheads. The frame-level sampler ran-
domly samples from a biased distribution to determine whether to
enter a profiling window, which is a short period of gameplay where
profiling occurs. Outside a profiling window, our framework incurs
undetectable overheads. Inside a profiling window, an API-level
sampler uniformly randomly chooses which API calls to sample.
Finally, a shader-level sampler uniformly randomly selects one or
more points in a shader program to instrument from the set of eli-
gible measurement positions. For example, with basic block based
instrumentation, each basic block represents a legal instrumenta-
tion point. The CFG in Figure 4 has five instrumentation points,
one for each basic block.

If invoked enough times, our hierarchical profiler statistically
guarantees coverage across all API calls and all points within
shaders bound to these calls. The driver controls the frame- and
API-level samplers, and the backend compiler controls the shader-
level sampler. We now discuss the driver and compiler support in
turn, and end this section by discussing how a production system
might aggregate piecemeal profiles.

3.2. Driver Support

The graphics driver orchestrates Cooperative PGO. The driver
tracks Direct3D present calls to determine when frames get ren-
dered. This serves as an extremely low overhead heartbeat to deter-
mine when to enter and exit profiling windows. On a present call,
we effectively flip a biased coin to determine whether to enter a
profiling window. To improve efficiency, our prototype does not
sample from a Bernoulli distribution on every present call, but in-
stead samples (much less frequently) from a geometric distribu-
tion to determine how many present calls will occur before the
next “heads” [Lib04]. Once inside a profiling window, Cooperative
PGO registers for additional callbacks to track API calls for the
API-level sampler. At the end of a profiling window, set to 1,024
frames in this paper, the driver removes these callbacks.

We make the frame-level sampler pick windows of several
frames rather than a single frame at a time in order to amortize
shader compilation overheads over a large enough region. As dis-
cussed in Section 3.3 below, instrumentation involves spawning
asynchronous shader compilations, most of which will not finish
within the lifetime of a single frame. Profiling windows increase
the likelihood that instrumented shaders will be used before the
driver garbage collects them. Furthermore, frequent changes to the
driver’s callback dispatch table could introduce stutter.

Figure 3 shows the operation of the API-level sampler. The
driver does not sample if it detects that the CPU’s ability to queue
work lags the GPU’s ability to render the work. If the CPU is
the bottleneck, improving the runtime performance of GPU-side
shader execution is unimportant. Furthermore, as Figure 3 shows,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

73

Stephenson, Rangan, & Keckler / Cooperative PGO

Frame Sampler

Profiling

Window 1

Profiling

Window 2

Profiling

Window 3

Draw(3, 6, 0)

Dispatch(240, 135)

DrawIndexed()

Dispatch(60, 45, 1)

Draw(3, 6, 0)

DrawInstanced()

DrawIndexed()

DispatchIndirect()

Dispatch(1, 1, 1)

,..

API Sampler

Shader Sampler

...

r0 = tex(r0, r1)

r2 = mul_sat(r5)

r3 = r0 x r2

r4 = r3 x r10 − 1.0

r10 = tex(r12, r13)

r4 = r4 + r10

...

Single Frame

Shader Program

for an API callGaming Application

Time

Picks API call to profile.

Picks instrumentation points.

Determines profiling windows.

Frames of a

Figure 2: Hierarchical random sampling in a single client of the Cooperative PGO system.

GPU is bottleneck?

Bind original shader

Flip biased coin

Run shader on GPU

Yes No

Tails

Already have
instrumented shader?

Bind instrumented shader

Spawn instrumented
asynchronous compilation

Heads

Yes

No

Bind memory for shader

Figure 3: The driver’s API-level sampler. Most draw and dispatch
calls use uninstrumented shaders. Occasionally the driver will
spawn non-blocking asynchronous compiles to instrument shaders
for profiling.

instrumentation involves recompiling shaders on CPU-side compi-
lation threads, which will additionally burden the CPU and cause
frame rates to drop.

However, if the driver determines that the GPU is the bottleneck,
then the API-level sampler elects to profile with probability p when
binding draw or dispatch calls to execute on the GPU. Assuming
sparse random profiling (e.g., p < 0.01), the driver will almost al-
ways bind original, uninstrumented shaders, which will execute on
the GPU with no overhead. This sampler also performs a coin toss
by sampling from a geometric distribution [Lib04]. Occasionally

the biased coin toss will come up “heads” and the driver will initi-
ate sampled profiling.

The driver will first check to see if it already has an instrumented
shader variant for the affected pixel or compute shader. (Our work
does not consider vertex, geometry, or tessellation shaders because
they are rarely performance bottlenecks.) If the driver has not gen-
erated an instrumented variant, it will spawn an asynchronous in-
strumented compilation of the shader. Importantly, the driver does
not block the current draw or dispatch call waiting for compilation
to finish, but will instead use the original, uninstrumented shaders.
Some future sample will use the instrumented shader when com-
pilation finishes. If the driver has an instrumented shader variant,
then instead of binding the original shader, the driver will perform
these additional steps:

• If the driver has not already done so, the driver allocates mem-
ory into which the instrumented shader can write its profiling
information during execution.
• The driver binds the instrumented shader that will, when it exe-

cutes on the GPU, record profiling information in GPU memory.

The driver transfers profiling data in GPU memory to system
memory or disk at regular intervals. At the end of a user session,
this data will be packaged and shipped to a centralized server.

3.3. Compiler Support

As is common for PGO, our Cooperative PGO system relies on
the compiler to insert instrumentation code during compilation
such that when the instrumented shader runs on the GPU it will
record profiling information into memory that the driver binds to
the shader. When the driver decides to instrument a shader, it uses
dedicated compilation threads to asynchronously compile.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

74

Stephenson, Rangan, & Keckler / Cooperative PGO

A

Entry

B

C

Exit

Insert “software”
counter for entry

Insert “software”
counter in C

̂pentry = 1

̂pexit = 1

̂pA = 0.75 ̂pB = 0.23

̂pC = 0.26

Figure 4: Example shader CFG. Our approach sparsely samples
the space of points. In this example, block C is randomly sampled
causing the compiler to instrument a “software” counter in C and
another normalizing counter in the entry.

Typical PGO instrumentation is intrusive and has substantial
runtime overheads. Instead, we sparsely instrument shaders as we
show in Figure 4. In this simple example we show how we can
sparsely randomly instrument basic blocks with “software" coun-
ters to estimate basic block frequencies relative to the shader’s en-
try. At run-time, the driver passes a pointer to an array of counters
that it allocated to record the profile statistics. The compiler, there-
fore instruments the shader by adding fast L2 atomic increment
instructions [Mic18a], appropriately indexed into the counter array,
to a randomly chosen block and the entry block. In Figure 4 the
chosen block is C, and we can estimate its frequency, p̂C by nor-
malizing the value in C’s counter by the value in the entry block’s
counter. The number of points that the system measures in one
batch is controllable, and we call it the batch size, b. For traditional
PGO, the batch size is the entire space of points, but Cooperative
PGO enables batch sizes as small as one.

Normalized counter values are a key element of Cooperative
PGO because samples or piecemeal profiles of the same shader
program may correspond to different game resolution settings or
different scenes. Thus, absolute counter values in isolation, such
as the execution count of a basic block or zero-value counts, must
be normalized to add meaning in a Cooperative PGO system. We
normalize counter values with respect to the number of invocations
of the shader program, which is simply the execution count of the
program entry basic block, and is tracked for all targeted PGOs.

A Cooperative PGO system experiences sampling errors com-
mensurate with the number of samples recorded. In Figure 4 blocks
B and C should have the same execution frequency since B falls
through to C, but the sampling process can cause small inconsis-
tencies. We do not fully characterize the accuracy of the profiles
compared to ground truth, in part because prior art has character-
ized the accuracy of sample-based profilers [AR01], and because
for the profile-guided optimizations we consider in this paper, accu-
racy is not paramount. For instance, basic block reordering focuses
on moving cold blocks to the end of a program; it is not important
exactly how cold they are, just that they are cold.

3.4. Aggregator

To construct a whole program profile, an aggregator assembles
the discrete piecemeal profiles into a data structure representing
the behavior of the entire program. The aggregator runs as a ser-
vice on a centralized server and communicates with the distributed
clients participating in piecemeal profiling. The aggregator receives
piecemeal profiles from various clients in a gaming cloud and ac-
cumulates these profiles against the corresponding game’s profile
database.

In our prototype, the aggregator continually accumulates incom-
ing piecemeal profiles in their raw form, which just includes raw
counter values, metadata to indicate the profile type, the points in
the space that the client profiled, and a normalization counter that
the aggregator uses to normalize the raw counter values. The ag-
gregator maintains a database of every point it has ever received
from a client. In our prototype, an administrator explicitly requests
that the aggregator generate a curated PGO database that a client’s
PGOs use during compilation. We currently only populate the PGO
database for shaders in which we have gathered at least one sample
for every point in the shader’s space. Where more than one sam-
ple exists for a point, the aggregator normalizes each sample, then
averages the normalized samples. In our experiments the hottest
shaders were well-covered, with several samples per point.

In an actual deployment, with an abundance of raw profiles
with which to work, an aggregator would only populate the PGO
database with profiles for shaders in which it has reasonable confi-
dence in each point’s estimated value, for example by using solu-
tions to the polling problem [BT02]. Additionally, it could afford
to only maintain a sliding window of piecemeal profiles, discard-
ing the oldest profiles to better capture changing trends in game-
play. Our prototype’s PGO databases contain exactly one value per
point (e.g., a PGO database of basic block frequencies contains one
floating point number per block, which contains the block’s esti-
mated frequency). However, an aggregator could easily construct
histograms of normalized values for each point for PGOs designed
to consider profile distributions [HNL∗13]. The aggregator could
also compute age-weighted averages, confidence intervals, vari-
ance, and more for each point in the space.

4. Case Studies

This section describes three profile-guided optimizations that we
evaluate in the context of Cooperative PGO.

4.1. Case Study I: Using Basic Block Frequencies

The canonical PGOs, and those which are available in most com-
mercial compilers, leverage dynamic basic block frequency infor-
mation to make smarter compilation decisions. We modified four
compiler optimizations to use basic block frequency information:

• Predication: We modified our baseline predication heuristic to
not predicate blocks that are infrequently executed (< 1%).
• Loop unrolling: We modified our loop unroller to forgo unrolling

cold loop bodies.
• Block layout: We modified our final code generator to reorder

basic blocks such that cold blocks are moved to the end of the
shader.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

75

Stephenson, Rangan, & Keckler / Cooperative PGO

b0 = e x p e n s i v e 0 ()
b1 = e x p e n s i v e 1 ()
b2 = e x p e n s i v e 2 ()
r0 = TEX / / l i k e l y z e r o
r4 = r0 * b0
r5 = r4 * b1
p i x o u t = r5 * b2

(a) Original code.

r0 = TEX
i f (r0 == 0 . 0) {

p i x o u t = 0 . 0
} e l s e {

b0 = e x p e n s i v e 0 ()
b1 = e x p e n s i v e 1 ()
b2 = e x p e n s i v e 2 ()
r4 = r0 * b0
r5 = r4 * b1
p i x o u t = r5 * b2

}

(b) Transformed code.

Figure 5: Zero-value specialization concept.

• Register allocation: We modified the register allocator to give
allocation preference to hot basic blocks.

While basic block PGOs attempt to optimize various aspects of
control flow, the next PGO we present optimizes data dependencies
and introduces additional control flow to shader programs.

4.2. Case Study II: Zero-Value Specialization

Rangan et al. demonstrated that zero-value specialization can im-
prove the performance of graphics applications and present a fast-
slow versioning transform called Zeroploit [RSU∗20], which is il-
lustrated in Figure 5. In Figure 5a, if the texture operation is likely
to return zero, then because r0 feeds a multiply chain, we see that
r4, r5, and pixout are also likely to be zero. Depending on the
particulars of the “expensive” functions and the likelihood that r0
is zero, it may be profitable to transform the code into that shown
in Figure 5b. If r0 is frequently zero, this specialized function will
forgo executing the expensive functions and will simply write a
zero into the pixout register. However, since we are not guaran-
teed that r0will always be zero, the transformation includes a slow
fallback path. In this example, we call r0 the versioning variable
as it determines whether to execute the optimized or unoptimized
version of the code.

While this transformation is not IEEE 754 compliant [Mic19a],
game developers typically allow for such IEEE-unsafe floating
point optimizations to opportunistically squeeze out additional per-
formance as well as to ensure that NaN values do not leak into ren-
der targets. For example, setting the refactoringAllowed [Mic18c]
global flag and dropping the precise storage class specifier for vari-
able declarations [Mic18f] in Microsoft’s high-level shading lan-
guage (HLSL) explicitly permits the reassociation and optimization
of floating point operations.

Stephenson and Rangan recently described an automatic com-
piler technique for Zeroploit called PGZ [SR21], which we use as
our second case-study. Below, we provide a high-level overview of
PGZ and discuss how PGZ can benefit from a Cooperative PGO
framework.

4.2.1. The PGZ algorithm

Algorithm 1 presents the general approach of PGZ [SR21], which
we have faithfully implemented in our prototype. PGZ’s first task,
ENUMERATECANDIDATES, is to enumerate the set of possible ver-
sioning variables in a shader, referred to as candidates. Any write

Algorithm 1: PGZ.
Input: shader, the shader program to be transformed.
Input: profile, the associated value profile.
Output: xformed, the transformed shader.
Ntransformed← 0
cands← ENUMERATECANDIDATES(shader,profile)
repeat

foreach c ∈ cands do
V rguard← CANDIDATEVR(c)

pzero← CANDIDATEPZERO(c)
{C,D}← CANDREMOVALSETS(V rguard)

score[c]← ESTIMATESAVINGS(C,D, pzero)
end
if ∃ s ∈ score > T then

c← i where score[i] = max(score)
TRANSFORM(c)
cands = cands− c
Ntransformed← Ntransformed +1

else
Return

end
until Ntransformed > 2

1

r0 = TEX

r4 = MUL r0, rBackward0

r5 = MUL r4, rBackward1

pixout = MUL r5, rBackward2

Backward

Slice 0

Backward

Slice 1

Backward

Slice 2

Evaluate
opportunity of
specializing r0

0

00

00

00

Figure 6: Evaluating a candidate. Constant propagation and fold-
ing can convert some instructions to constant literal moves. A sub-
sequent dead code elimination pass removes backward slices of
computation that are no longer needed.

of a virtual register is a candidate. In Figure 5a the set of candidates
is {b0,b1,b2,r0,r4,r5, pixout}.

With a set of candidates to consider, the algorithm determines
the benefit of each candidate without actually transforming the
code. Most of the complexity of PGZ is contained in CAN-
DREMOVALSETS, which propagates a candidate’s zero value, then
applies dead code elimination to remove unneeded instructions.
Figure 6 illustrates the approach on a simple example, which shows
CANDREMOVALSETS’ evaluation of variable r0. Constant propa-
gation causes all subsequent instructions to evaluate to zero, and
the subsequent dead code elimination analysis marks the backward
slices of computation as dead since they are not required to produce
constant literals (shown with dotted lines in the figure).

After evaluating CANDREMOVALSETS, Algorithm 1 estimates
the effectiveness were it to transform the given candidate. The ES-
TIMATESAVINGS function (beyond the scope of this paper) exam-
ines the set of instructions that would be converted to constants

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

76

Stephenson, Rangan, & Keckler / Cooperative PGO

or eliminated, along with the likelihood pzero that the candidate is
zero to estimate the dynamic worth of applying the transformation.
Candidates with pzero less than a threshold of 0.32 are ignored by
PGZ’s heuristic. As recommended in the PGZ paper, we pass the
versioning variable through a vote.all operation [NVI21b] to ensure
that the dynamic branching condition is warp-convergent. This pro-
cess ensures that the zero-specialized fast path is taken only if all
threads are in agreement. Otherwise the default slow path is exe-
cuted dynamically. For more details, we refer the reader to the PGZ
paper [SR21].

4.2.2. Profiling Requirements

PGZ relies on a profile that contains Pzero for all of a shader’s candi-
dates. In addition, the ESTIMATESAVINGS function uses dynamic
basic block weights to estimate the runtime impact of the trans-
formation. To profile for Pzero we associate two counters for every
candidate: one tracks the number of writes to the candidate in total,
and the other tracks the number of writes to the candidate in which
all threads of the warp wrote zero. While the instrumentation re-
quired to profile for zero-value frequencies is straightforward, some
shaders have hundreds to thousands of candidates. In this case, the
overhead of online profiling would be prohibitive, making PGZ an
excellent fit for a Cooperative PGO-based implementation.

4.3. Case Study III: A-Z Testing

A-Z testing is our name for a common adaptive optimization strat-
egy that dynamically measures the runtime of N code variants, and
then chooses the fastest variant. This is a straightforward, well-
studied approach that has found success in a number of different
settings, from static code compilation to just-in-time code genera-
tion [DR97, AR01, LAHC06, PCL11, LMnJC20]. The only differ-
ence between A-Z testing and prior research is that A-Z testing, by
virtue of running within a Cooperative PGO system, can consider
a huge number of code variants.

We tested 24 different compiler flag settings for this PGO. These
flags control a range of scheduling parameters, register allocation
settings, and disabling of compiler passes such as predication, loop
invariant code motion, and loop unrolling. We did not test combi-
nations of these flags since our goal here is not to discover the max-
imum benefit from this PGO, but to prove that Cooperative PGO in
a cloud gaming system makes this PGO viable. As Section 6 shows,
the single-flag-at-a-time approach demonstrates that this PGO can
produce tangible performance benefits. When deployed in a pro-
duction gaming cloud, we expect that the variant testing PGO can
afford to test flag combinations commensurate with the popularity
of a game. The greater the popularity, the more the combinations
that can be tested in the profiling phase, at the specified sampling
rate. A machine learning technique could potentially guide a so-
phisticated search through the space of knob settings [AKC∗18].

The profiling requirement for this PGO is simply the ability to
measure whole shader execution times. This measurement can be
performed either by using API-level timestamp queries [Mic18e],
which our prototype does, or by reading the GPU clock with assem-
bly instructions [NVI21b] at the beginning and the end of a shader
program, obtaining their difference to get shader latency, and then
averaging the latencies across all warps of a shader program.

Table 1: Gaming applications evaluated in this paper.

Application Short APICs dx11 dx12
Ashes of the Singularity - Escalation Ashes 3 X

Deus Ex Mankind Divided DXMD 1 X
Final Fantasy XV FFXV 1 X

Metro Exodus Metro 1 X
MetDemo demo X

PlayerUnknown’s Battlegrounds PUBG 3 X
Horizon Zero Dawn HZD 1 X
WatchDogs Legion Watch 1 X

Red Dead Redemption 2 RDR 1 X
Serious Sam 4 SS 3 X

5. Methodology

This section describes how we emulate Cooperative PGO. Because
our candidate PGOs focus on improving the performance of shader
programs running on a GPU, we consider games that are GPU-
limited. Table 1 lists the gaming applications evaluated in this pa-
per. Using an internal frame-capture tool, similar to publicly avail-
able tools like Renderdoc [Kar21] or Nsight [NVI21a], one or more
random single-frames are captured from a built-in benchmark or
from actual gameplay of each gaming application, depending on
whether the game has a built-in benchmark. These single-frame
captures, called APICs, contain all the information needed to replay
a game frame (i.e., the API sequence, including all relevant state, as
well as shader programs used in individual calls). For applications
represented by more than one APIC, we made sure to capture each
APIC from visually different scenes. The APICs were captured at
either 1440p or 4k. APIC-based experimentation enables controlled
piecemeal profile aggregation and repeatable benchmarking, which
allowed us to perform in-depth analysis and debugging. The APICs
we use were captured by NVIDIA’s Quality Assurance team from
popular games. Such QA-captured APICs are routinely used to
understand and improve production GPU driver performance, and
speedups on these APICs regularly translate well to gameplay.

We evaluate our candidate PGOs on a total of 15 APICs spanning
9 applications as shown in Table 1. We hyphenate an application’s
short name with the APIC number to uniquely refer to an APIC
(e.g., SS-3 to refer to the third APIC of Serious Sam 4). For Metro
Exodus, in addition to the one APIC, we also evaluate our can-
didate PGOs on the built-in demo (distinguished with short name
MetDemo). Running an APIC involves replaying a single frame in
a loop, for the desired frame count, whereas the demo is a multi-
frame DirectX 11 application that runs for more than 8000 frames.

We perform our experiments on an NVIDIA GeForce RTX™
2080 GPU, locked to base clock settings of 1515 MHz for the
GPU core and production DRAM frequency settings. Full speci-
fication of this GPU can be found in TechPowerUp [Tec18]. We
compare the final rendered image against a golden reference image
to ensure that our transforms are functionally correct. We measure
whole-system frames-per-second (FPS) speedups, which includes
GPU and CPU execution time using accurate, in-house profiling
tools. These runs use production settings for driver and compiler
optimizations, which include classical optimizations such as con-
stant folding, dead code elimination, loop unrolling, and instruction
scheduling, in addition to various machine-specific optimizations.

We implemented a piecemeal profiler and our candidate PGOs as
a research prototype within a recent branch of NVIDIA’s GeForce
Game Ready driver. At a high level, the baseline compilation flow

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

77

Stephenson, Rangan, & Keckler / Cooperative PGO

operates in two phases. First, a proprietary driver frontend converts
input shader program code in high-level assembly (e.g. Microsoft’s
DirectX ByteCode (DXBC) [Mic18d] or DirectX Intermediate
Language (DXIL) [Mic19b]) to a driver-internal intermediate rep-
resentation (IR1) and performs API-dependent code transforma-
tions and peephole optimizations. Second, a proprietary backend
optimizing compiler takes the IR1 output from the driver, translates
it to a compiler-internal intermediate representation (IR2), applies
classical and machine-specific optimizations, and finally compiles
optimized IR2 programs to the binaries that ultimately execute on
the GPU’s SMs. Our prototype’s code instrumentation and PGOs
operate at the IR2 level in early passes of a modified version of
the production backend compiler. Our prototype uses a hash of a
shader’s IR1 output from the driver along with driver and compiler
knobs to associate shader variants with profile data.

In a Cooperative PGO system, aggregated profiles will evolve
over time, possibly exposing new optimization opportunities and/or
new information about previously transformed shaders. For exam-
ple, for PGZ, new points in a program might be identified as likely
zero over time as gamers traverse different levels, scenes, and set-
tings of a game. A question arises about how one might profile and
re-optimize shaders that have already been specialized by Coopera-
tive PGO. Our PGO and instrumentation facilities, which we imple-
mented in the backend compiler, sidestep this issue by always using
the unspecialized IR1 output from the driver’s frontend compiler as
the starting point for transformations and profiling. To specialize a
shader the driver frontend passes an immutable IR1-representation
of the shader code to the backend compiler along with that shader’s
aggregated profile data, and the end result of the compilation is a
specialized binary that cannot be further transformed nor serve as
input to subsequent compiler passes. Later, if the driver is in a pro-
filing window and the API Sampler chooses to instrument the same
shader, the driver will again pass the shader’s immutable IR1 rep-
resentation to the backend compiler, which will perform the instru-
mentation without performing PGO specialization. This approach
fits naturally with the production driver’s implementation and does
not preclude any developer, driver, or compiler optimizations.

We could not deploy our infrastructure on a live gaming cloud
because it is in the research stage. Instead, we emulate Cooperative
PGO on a single GPU system as follows. We collect thousands of
piecemeal profiles for each APIC and the one demo in our test suite
by sparsely sampling with a large enough batch size that profiles
converge reasonably fast (1 to 2 days). Next, in an offline pass, we
aggregate these piecemeal profiles and dump the aggregated pro-
files to the disk. This offline approach enables controlled aggrega-
tion of profiles across APICs and allows us to perform interesting
cross-validation experiments, which we present in Section 6.5.

Our candidate PGOs use the aggregated profiles from disk to
perform the respective PGOs in our JIT compiler in dedicated runs,
which are used for FPS measurements to gauge the performance
of our PGOs. These runs still have very low-frequency sparse ran-
dom sampling enabled to mimic the negligible piecemeal profiling
overhead we expect to see in the client nodes of a real world Coop-
erative PGO system.

 −1%

 −0.5%

 0%

 0.5%

 1%

 1.5%

 2%

 2.5%

 3%

A
sh

es
−

1

A
sh

es
−

2

A
sh

es
−

3

D
X

M
D

H
Z

D

F
F

X
V

M
et

ro

P
U

B
G

−
1

P
U

B
G

−
2

P
U

B
G

−
3

R
D

R

S
S

−
1

S
S

−
2

S
S

−
3

W
at

ch

av
er

ag
e

P
er

ce
n
t

O
v
er

h
ea

d

p=0.0005(b=128)

p=0.0005(b=1)

p=0.001(b=1)

p=0.01(b=1)

Figure 7: Profiling overhead during a profiling window.

6. Results

This section presents results from our Cooperative PGO prototype.
We first quantify the overhead of piecemeal profiling and the con-
vergence rates for our three candidate PGOs, and then present per-
formance speedups for the candidate PGOs using the profile infor-
mation from their corresponding Cooperative PGO systems.

6.1. Profiling Overhead

Recall from Section 3.1 that in our Cooperative PGO system, pro-
filing occurs only during sporadic profiling windows of 1,024 con-
secutive frames, and then gets turned off completely. When a Coop-
erative PGO system is not in a profiling window, there is no over-
head. In this section, we present the overheads that gamers would
see during a profiling window. There are two knobs that we use
to control shader instrumentation, and both directly affect profiling
overheads. The first is the sampling probability p, which sets the
probability that our biased coin comes up heads when performing
API-level sampling on draw or dispatch calls. The smaller p is,
the less likely that the system will instrument a shader. The sec-
ond knob is the batch size b, which controls how many points in
the space we instrument, and therefore measure in one batch. In
Figure 4, because b = 1 we measure one point in the space, the fre-
quency of execution of block C. However, with b≥ 5, we measure
the frequencies of all blocks in the example CFG in one shot.

Figure 7 shows the overhead of our prototype during a 10 second
profiling window of game rendering. For each APIC on the X-axis,
the figure shows the average frame-rate slowdown as a percentage
of the uninstrumented baseline. Each bar corresponds to a given p
and b, as shown in the legend. The average frame-rate slowdown
is quite small for sparse sampling, usually well under 1%, and we
do not see an increase in stutters. Since even these low overheads
will offset potential gains from any PGO, we recommend profiling
only during sporadic profiling windows. By adjusting the probabil-
ity of the frame sampler entering a profiling window, an engineer
can drive the already low overhead in Figure 7 to negligible levels.

6.2. Profiling Coverage and Accuracy

With sparse random sampling of a space, we can use solutions to
the coupon collector’s problem to estimate how many windows we

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

78

Stephenson, Rangan, & Keckler / Cooperative PGO

Table 2: Sampling statistics for zero-value profiling.

Game Shaders per run Shaders #Points E[W] b = 1
p=0.001 p=0.01 p=0.001 p=0.01

Ashes-1 44 67 154/185 40,504 10,298 6,763
Ashes-2 57 74 128/177 35,306 6,844 5,272
Ashes-3 48 68 117/157 28,273 6,377 4,502
DXMD 191 472 465/495 75,651 4,678 1,893
HZD 0 0 286/302 119,690 - -

FFXV 121 290 419/459 103,765 10,400 4,339
Metro 73 136 184/195 34,743 5,251 2,819

PUBG-1 84 157 241/255 41,765 5,577 2,984
PUBG-2 107 182 251/268 47,471 5,033 2,959
PUBG-3 102 189 268/282 51,338 5,750 3,103

RDR 95 176 179/196 73,286 9,087 4,905
SS-1 46 81 114/129 21,901 5,033 2,858
SS-2 82 141 213/252 59,288 8,364 4,864
SS-3 83 135 191/231 53,651 7,413 4,557

Watch 60 277 627/636 250,909 54,406 11,785

expect to sample (with replacement) before we have covered the
entire space [MR95]. If, for example during a profiling window,
we measure a single, random basic block’s normalized frequency,
we would like to know how many windows we expect to observe
before we have an estimate for all N basic block frequencies in the
shader’s CFG. The expected number of windows, W , for any N is:

E[W] = N
N

∑
i=1

1
i
, (1)

which grows as Θ(N logN). Thus, for a CFG with 25 basic blocks,
we can expect to have to sample about 95 times to have a mea-
surement for each basic block. We will of course need to sample
each point in the space multiple times so that we can gain statisti-
cal confidence in our estimates. Assuming that the system samples
the shader at least once in 1

4 of the windows, we expect to require
100×4×95 = 38,000 windows to have sampled each basic block
in the shader’s CFG 100 times.

We have focused our discussion on basic block execution weight
profiling because basic block PGOs are commonplace. However,
the profiling space for basic block profiling is substantially smaller
than that of zero-value profiling, which the PGZ PGO uses. Table 2
shows the sampling statistics for our system on several game scenes
for zero-value profiling. The “Shaders per run” column shows how
many shaders our prototype samples during a single 1,024 frame
window with sampling probabilities of 0.001 and 0.01.

Our experiments perform heavy sampling, with p = 0.02 and
b = 128, which allows us to more quickly cover the profiling space
without a community of users. We were able to completely pro-
file most of the shaders used to render the given scenes, which
the “Shaders” column shows as a fraction of completely sampled
shaders over all sampled shaders. As the data show, a given shader’s
space for PGZ’s zero-value profiling is large. For example, we
completely profiled 128 shaders in Ashes-2, which combined for
35,306 points, yielding an average of 276 points per shader. The
“E[W]” column shows the expected number of 1,024 cycle sam-
pling windows we would need to perform to get the same level of
coverage for a given p when b = 1. The expected number of win-
dows is small compared to the number of frames for which these
games are played, and thus a production Cooperative PGO system
would have no problem achieving complete profile coverage.

For context, at the time of this writing over 900,000 gamers were
actively playing the top played game Counter-Strike: Global Offen-
sive on Steam [Ste20]. At a nominal 30 FPS, a Cooperative PGO

Table 3: Convergence of basic block frequencies for a compute
shader in MetDemo with p = 0.05 and b = 2.

A

B

D

C

E F

G H

I J

K

L

P

M N

Q

S

O

R

PMP 45 100 500 1000 2000 2492 GT
SPB 1-8 7-12 49-54 99-106 205-214 251-265 -
BB
A 1 1 1 1 1 1 1
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0
D 1 1 1 1 1 1 1
E 0 0 0 0 0 0 0
F 1 1 1 1 1 1 1
G 0 0.03 0.07 0.07 0.07 0.06 0.07
H 1 0.98 0.99 0.97 0.97 0.97 0.97
I 0.99 0.95 0.95 0.95 0.95 0.95 0.96
J 0.41 0.49 0.49 0.48 0.48 0.48 0.49
K 0.95 0.98 0.97 0.97 0.97 0.97 0.97
L 1.52 1.85 2.12 1.89 1.95 1.95 1.91
M 0.42 0.36 0.39 0.41 0.40 0.41 0.45
N 1.63 1.41 1.17 1.37 1.35 1.38 1.57
0 2.06 2.22 2.17 2.00 2.03 1.98 1.91
P 0.92 0.95 0.97 0.96 0.96 0.96 0.97
Q 0.67 0.76 0.84 0.83 0.85 0.85 0.81
R 0.60 0.73 0.85 0.83 0.84 0.84 0.81
S 0.99 0.98 0.98 0.97 0.97 0.97 0.97

system can effectively sample from among a population of 27 mil-
lion FPS (i.e. 900,000× 30 FPS). The average number of active
gamers per game across the top 100 games on Steam is upwards of
50,000, which implies an effective population of 1.5 million FPS
(50,000× 30 FPS). With such large populations to sample from,
Cooperative PGO can comfortably collect the required number of
samples within a short period of time, while minimizing profiling
overheads with low values of p. Concretely, applying the above to
Watch, the application in Table 2 with the largest profiling space,
the wall-clock time needed in a Cooperative PGO system to profile
∼55,000 windows is 55,000×1,024

1.5 million FPS , which equals 37.54 seconds.
The above assumes profiling is always on so that when one win-
dow ends, the next immediately begins. If the frame sampler were
to pick profiling windows with a 0.1 probability, the wall-clock
time needed for convergence would grow by 10x, which would still
amount to a modest 6.23 minutes. Different statistical techniques,
based on the variance in the data, could be used to determine how
many samples are required to ensure a specified confidence level.

For basic block profiling, our applications average around 17
blocks per shader, while for for A-Z testing there is a constant, 24
knob settings per shader. Though these profiling spaces are smaller
than PGZ’s, they are still too large for traditional adaptive optimiza-
tion with over 5,000 and 6,700 points per scene respectively. Low
profiling overheads coupled with modest profile collection times
make Cooperative PGO an attractive proposition for distributed
gaming systems and gaming clouds.

6.3. Case Study: Profile Convergence in MetDemo

MetDemo is a multi-frame, built-in demo from the application
Metro Exodus. To illustrate how piecemeal profiling works
across frames and scenes of a gaming application, we show in Ta-
ble 3 the control flow graph, with basic blocks A through S, of a
compute shader from MetDemo and how its BB execution weights
get aggregated and change over time. The top row, titled PMP,
lists the number of piecemeal profiles collected (with p = 0.05 and
b = 2) over time with “GT” representing ground truth, obtained by
aggregating BB execution weights across the entire demo. The SPB

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

79

Stephenson, Rangan, & Keckler / Cooperative PGO

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

A
sh

es
−

1

A
sh

es
−

2

A
sh

es
−

3

D
X

M
D

F
F

X
V

H
Z

D

M
et

ro

P
U

B
G

−
1

P
U

B
G

−
2

P
U

B
G

−
3

R
D

R

S
S

−
1

S
S

−
2

S
S

−
3

W
at

ch

av
er

ag
e

P
er

ce
n
t

im
p
ro

v
em

en
t

Figure 8: PGZ isolated single-frame performance gains.

row shows how many samples per block, as a range, each block has
received. After accumulating 45 piecemeal profiles, the aggrega-
tor has finally seen at least one sample for each of the 19 blocks.
As time progresses from left to right, more piecemeal profiles are
collected and aggregated from different frames, causing execution
weights of individual basic blocks to evolve before they stabilize
at values that are close to ground truth. This simple example il-
lustrates how sparse random sampling eventually converges to the
ground truth, which prior work has also demonstrated [AR01].

6.4. Single-Frame Testing

To test the soundness of our profiling data and PGOs, we perform
isolated single-frame testing. We first repeatedly run each of the
APICs in Table 1 with sparse sampling enabled (p = 0.02, and
b = 128) to collect frame-specific piecemeal profiles. We then run
our aggregator to create frame-specific PGO databases and test the
speedup we obtain on each frame with its custom PGO database.
Profiling consumes at least a day per application.

Figure 8 shows the results of this experiment for PGZ. The PGZ
PGO performs well for PUBG and SS, achieving gains of 15%
and 12%, respectively. Key shaders in those APICs contain PGZ
opportunities that eliminate large portions of computation when
likely-zero variables are dynamically zero. Most other applications
achieve lesser, but real speedups, and demonstrate that Cooperative
PGO is viable.

Figure 9 shows the results for our basic block PGOs and A-Z
testing. We implemented basic block PGOs because they are sta-
ples in the literature. Unfortunately, the PGOs we implemented
provide little benefit for typical shader programs, in part because
pixel shaders, which often dominate GPU utilization tend to have
straightforward control flow (where single basic block shaders are
not uncommon). Except for PUBG-1, which achieves a nearly 2%
gain, we do not see an overall performance advantage. A-Z testing,
on the other hand performs well, achieving a nearly 3% average
gain. Hot shaders in these applications show an affinity to one or
more of the knob settings with which we performed this experi-
ment, further reinforcing prior art that studies application sensitiv-
ities to compiler settings [KKOW00, AKC∗18].

 −1%

 0%

 1%

 2%

 3%

 4%

 5%

A
sh

es
−

1

A
sh

es
−

2

A
sh

es
−

3

D
X

M
D

F
F

X
V

H
Z

D

M
et

ro

P
U

B
G

−
1

P
U

B
G

−
2

P
U

B
G

−
3

R
D

R

S
S

−
1

S
S

−
2

S
S

−
3

W
at

ch

av
er

ag
e

P
er

ce
n
t

im
p
ro

v
em

en
t

BB

A−Z testing

Figure 9: BB PGOs and A-Z testing isolated single-frame perfor-
mance gains.

Table 4: PGZ transformed candidates.

Game P1 P2 P3 P1+P2 P1+P3 P2+P3 P1+P2+P3
Ashes-1 61 13 12 60 57 13 59
Ashes-2 12 62 12 62 12 62 62
Ashes-3 12 13 56 13 58 56 57
PUBG-1 43 12 12 46 46 15 49
PUBG-2 12 56 8 59 17 59 62
PUBG-3 6 8 56 8 60 61 59

SS-1 9 0 0 9 9 0 9
SS-2 1 45 4 47 5 46 46
SS-3 1 4 39 5 40 39 40

6.5. Multi-Frame Cross-Validation Experiments

The single-frame tests we described above demonstrate that the
piecemeal profiling component of a Cooperative PGO system
works. We now test whether the PGOs with which we evaluate Co-
operative PGO can generalize across game scenes. We take a tra-
ditional approach to showing generalization: we individually pro-
file APICs as we did above, and then we apply one APIC’s PGO
database to another APIC from the same game. We study cross-
validation on Ashes, PUBG, and SS, which have 3 APICs each.

Table 4 investigates how many transformations PGZ performs
for each scene using a variety of PGO databases, which is a proxy
for the quality of the PGO database. For each application, we create
three scene-specific PGO databases by exclusively training on each
of the three varied scenes we collected for the application. The P1
column shows how many transformations PGZ performs when we
use a PGO database using profiles exclusively from the first scene
of each application. For example, the P1 column for the Ashes-
2 application uses the PGO database created with Ashes-1 pro-
files to compile Ashes-2. The P2 and P3 columns represent the
PGO database using profiles from the second and third scenes for
each application, respectively; and P1+P2, P2+P3, P1+P3, and
P1+P2+P3 refer to different combinations of aggregated PGO
databases from the associated scenes of the corresponding games.

Take SS-1 as a concrete example: PGZ transforms 9 candidates
using the PGO database gathered exclusively from SS-1, but it
transforms none when using P2 and P3. Encouragingly, with the
exception of Ashes-1 the data shows that combining piecemeal
profiles across frames provides better profiling coverage in a Coop-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

80

Stephenson, Rangan, & Keckler / Cooperative PGO

 −2%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

A
sh

es
−

1

A
sh

es
−

2

A
sh

es
−

3

M
et

D
em

o

P
U

B
G

−
1

P
U

B
G

−
2

P
U

B
G

−
3

S
S

−
1

S
S

−
2

S
S

−
3

av
er

ag
e

>8k frames

P
er

ce
n
t

im
p
ro

v
em

en
t

P1

P2

P3

P1+P2

P1+P3

P2+P3

P1+P2+P3

Figure 10: Frame-rate speedup for PGZ on an in-game demo and
with cross validation across APICs.

erative PGO system. In fact, the P1+P2+P3 PGO database, gener-
ally identifies the most PGZ opportunities across all of the scenes.

Figure 10 shows the frame-level PGZ speedups from apply-
ing various PGO databases to our APICs. We generally expect
the APIC-specific PGO databases to perform at, or near the peak,
which is mostly true for these APICs. The red bars show that the
combined P1+P2+P3 PGO database performs well across all of
these applications, and is the best database on average. The perfor-
mance correlates well with the data in Table 4 and lends credence
to the idea that aggregating profiling data across varied scenes can
improve profiling coverage. In addition to performing the cross val-
idation studies on APICs, we thoroughly profiled the MetDemo
in-game benchmark, which consists of over 8,000 frames, for two
days on a single machine. As Figure 10 shows, using an aggregated
PGO database, our PGZ PGO recorded a 4.9% FPS speedup on the
full demo. We did not evaluate MetDemo on BB and A-Z PGOs.

Figure 11 shows the performance of the A-Z PGO using the
same cross validation setup we described above. Here too, we see
that the red bar representing the P1+P2+P3 database performs the
best on average and also generalizes well across databases. This
result is intuitive since many game scenes share the same impor-
tant shaders, and many compiler knobs improve static shader prop-
erties (e.g., instruction grouping and scheduling) that are largely
data-independent.

7. Towards a Fully-Distributed Cooperative PGO System

Our single-node emulation allowed us to demonstrate that Coop-
erative PGO can enable interesting optimizations that require pro-
files too expensive to collect fully at runtime. This section outlines
the tasks required to deploy Cooperative PGO in an actual cloud,
which range from straightforward engineering to investigating open
questions and addressing privacy concerns.

7.1. Open Questions

One problem that could afflict Cooperative PGO is profile dilu-
tion. As we discussed in Section 6, Ashes-1 discovered fewer
PGZ opportunities with the combined PGO database than it did
with the scene-specific PGO database. For eleven other candidates

 0%

 1%

 2%

 3%

 4%

 5%

A
sh

es
−

1

A
sh

es
−

2

A
sh

es
−

3

P
U

B
G

−
1

P
U

B
G

−
2

P
U

G
B

−
3

S
S

−
1

S
S

−
2

S
S

−
3

av
er

ag
e

P
er

ce
n
t

im
p
ro

v
em

en
t

P1

P2

P3

P1+P2

P1+P3

P2+P3

P1+P2+P3

Figure 11: Frame-rate speedup for A-Z testing with cross-
validation across APICs.

in Ashes-1, several zero-value probabilities dropped in the com-
bined P1+P2+P3 PGO database, when compared to the P1 PGO
database. Though the zero-value probabilities still triggered PGZ’s
threshold-based heuristic, further dilution by adding in profiles
from yet other scenes, could eventually cause probabilities to drop
below the threshold and mask opportunities.

While a deeper exploration of the profile dilution problem and
its solutions are beyond the scope of this paper, a Cooperative
PGO system could tabulate distributions of profile values from the
piecemeal profiles, including joint distributions with large enough
communities. Enhanced PGOs that consider distributions of data
for each point, such as presented by Homescu et al. [HNL∗13],
could better protect against dilution. Another alternative is to define
an application programming interface (API) for the game devel-
oper to hint to a Cooperative PGO system about scene changes or
other drastic differences, which can then be used to perform scene-
specific clustered aggregation. An API-based approach could simi-
larly suit the adaptive optimization frameworks in modern drivers.

7.2. Engineering Details

Recall from Section 3 that a Cooperative PGO system has three
main components: a driver that orchestrates piecemeal profiling and
interacts with a central server to obtain aggregated profiles; a com-
piler that performs the instrumentation for piecemeal profiling and
implements PGOs; and an aggregator that runs on a central server
and creates useful whole program profiles by accumulating per-
shader piecemeal profiles. In a cloud deployment, the driver and
compiler changes will be included in the user-mode driver (UMD)
installations on individual nodes of the cloud.

The aggregator, in its simplest form, will run as a daemon on a
high-availability central server that is accessible, over a private net-
work, to the UMD instances on the individual nodes of the cloud.
The central server will be walled off from all external traffic ex-
cept for clients in the same cloud, i.e., the clients terminate TCP
connections to gamers. Best practices in systems engineering will
be used to set up low overhead connections between the UMD in-
stances and the aggregator daemon, and to provide quality of ser-
vice (QoS) guarantees on the central server. The latter may neces-
sitate dropping piecemeal profiling packets from individual cloud

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

81

Stephenson, Rangan, & Keckler / Cooperative PGO

nodes to avoid overwhelming the central server and causing denial-
of-service (DoS) attacks. Hierarchical or distributed aggregator ser-
vices may also be considered.

Since Cooperative PGO’s ultimate objective is to improve game-
play performance, we must ensure that in addition to compilations
for instrumented shaders, network and disk activity on the client
nodes occur off the critical path of gameplay and do not affect the
user experience. At the end of a gaming session on a client node,
piecemeal profiles collected during gameplay and copied to system
memory or disk-based circular buffers, will be encrypted and trans-
mitted to the server. Symmetrically, at the start of a gaming session
a UMD node will issue a pull request to the central server for the
aggregated profile data for a given game. After obtaining the pro-
filing data as response from the server, the UMD will trigger PGO
compilations as appropriate.

Cooperative PGO’s components, especially UMD clients, must
be resilient to error conditions such as unreliable network trans-
port. If the aggregator daemon becomes unreachable, clients should
continue to operate without PGO enabled or with stale local PGO
databases. As alluded to in Section 3.4, we expect to implement
suitable replacement policies in the aggregated profile database so
that the database size does not grow too large and cause problems
during database updates. Although a Cooperative PGO system is
naturally resilient against stray, lost, or malformed network packets
carrying piecemeal profiling information, we plan to fully encrypt
network traffic to safeguard against rogue game clients intercepting
and modifying profiles and PGO databases.

7.3. Privacy and Consent

We must consider the privacy and consent ramifications of Coop-
erative PGO. We plan to copy NVIDIA’s model for Geforce Ex-
perience, which attains end user consent to collect and use teleme-
try data at install time [Cor21]. In a cloud-based model, we in-
stead seek consent when users create accounts, or perhaps before
every session. An alternative incentive-based model is to only en-
able PGO compilations for users who have opted to enable profil-
ing in Cooperative PGO. We will additionally take several actions
to preserve privacy. First, all profiling data collected by a Coop-
erative PGO client is anonymous. The ”tag” associated with pro-
file data is a combined 192-bit hash of shader code, compiler, and
driver knobs, and contains no user information whatsoever. Second,
by design, individual piecemeal profiles reveal little about a pro-
gram’s behavior. Only when an aggregator combines a large corpus
of piecemeal profiles do the program’s execution trends emerge.
Third, Cooperative PGO exclusively profiles the pixel and compute
shaders in games. By not profiling host-side code we drastically
reduce a user’s privacy exposure. Finally, the piecemeal profiles
never leave the fire-walled cloud and all communication between
clients and the aggregator is encrypted. Advances in homomorphic
encryption could practically eliminate a gamer’s risk by allowing
the aggregator to operate on fully encrypted data [WH12].

8. Conclusion

To address the shortcomings of adaptive optimizations and tradi-
tional profile-guided optimizations, we propose Cooperative PGO.

The optimizations we presented as case studies in this paper rely
on profiling information that cannot be collected online using tra-
ditional approaches. By crowdsourcing PGO profiling we simulta-
neously minimize profiling overheads and provide ample profiling
coverage. We provide a proof-of-concept piecemeal profiler and
explore potential PGOs that improve the performance of popular
highly-optimized Direct3D games. Even with piecemeal profiling
enabled, our implementation of the PGZ transformation yielded
impressive gains of up to 15% over a highly-tuned production base-
line. To the best of our knowledge we are the first to:

• Propose and evaluate crowdsourcing for PGO.
• Propose and evaluate crowdsourcing in a JIT system.
• Employ a hierarchical sampling approach that dramatically re-

duces overheads and makes online profiling and PGO practical
for interactive gaming.

Cloud gaming, thanks to its high-performance demands and the
possibility of crowdsourcing, is tailor-made for Cooperative PGO.

Acknowledgements

We thank our anonymous reviewers and Emmett Kilgariff for their
useful feedback. Discussions with Marc Blackstein lead to the Co-
operative PGO idea. Eric Werness, Jerry Zheng, Lee Hendrickson,
Sanket Misal, and Christos Angelopoulos helped brainstorm driver
and compiler implementation details. Many thanks to the Applied
Architecture team for their support during this work.

References

[AFG∗05] ARNOLD M., FINK S. J., GROVE D., HIND M., SWEENEY
P. F.: A Survey of Adaptive Optimization in Virtual Machines. Proceed-
ings of the IEEE 93, 2 (2005), 449–466. 1

[AKC∗18] ASHOURI A. H., KILLIAN W., CAVAZOS J., PALERMO G.,
SILVANO C.: A Survey on Compiler Autotuning Using Machine Learn-
ing. ACM Computing Surveys 51, 5 (Sept. 2018). 7, 10

[AR01] ARNOLD M., RYDER B. G.: A Framework for Reducing the
Cost of Instrumented Code. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) (2001), pp. 168–
179. 2, 3, 5, 7, 10

[BT02] BERTSEKAS D., TSITSIKLIS J.: Introduction to Probability.
Athena Scientific Books. Athena Scientific, 2002. 5

[CFE97] CALDER B., FELLER P., EUSTACE A.: Value Profiling. In In-
ternational Symposium on Microarchitecture (MICRO) (1997), pp. 259–
269. 2

[Chr20] CHRISTOFF M.: Chrome Just Got Faster with Pro-
file Guided Optimization, August 2020. URL: https:
//blog.chromium.org/2020/08/chrome-just-got-
faster-with-profile.html. 2

[CL99] COHN R., LOWNEY P. G.: Feedback Directed Optimization in
Compaq’s Compilation Tools for Alpha. In ACM Workshop on Feedback-
Directed Optimization (1999). 2

[CMH∗13] CHO H. K., MOSELEY T., HANK R., BRUENING D.,
MAHLKE S.: Instant Profiling: Instrumentation Sampling for Profiling
Datacenter Applications. In International Symposium on Code Genera-
tion and Optimization (CGO) (2013), pp. 1–10. 2

[Cor21] CORPORATION N.: License for Customer use of GeForce Ex-
perience Software, May 2021. URL: https://www.nvidia.com/
en-us/geforce/geforce-experience/license/. 12

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

82

https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html
https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html
https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html
https://www.nvidia.com/en-us/geforce/geforce-experience/license/
https://www.nvidia.com/en-us/geforce/geforce-experience/license/

Stephenson, Rangan, & Keckler / Cooperative PGO

[D’A20] D’ANASTASIO C.: An Infrastructure Arms Race
Is Fueling the Future of Gaming. Wired (2020). URL:
https://www.wired.com/story/cloud-gaming-
infrastructure-arms-race/. 2

[DR97] DINIZ P. C., RINARD M. C.: Dynamic Feedback: An Effec-
tive Technique for Adaptive Computing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (1997),
Association for Computing Machinery, pp. 71–84. 2, 7

[Fre08] THE FREE SOFTWARE FOUNDATION: PDO - GCC Wiki, 2008.
URL: https://gcc.gnu.org/wiki/PDO. 2

[FT11] FURSIN G., TEMAM O.: Collective Optimization: A Practical
Collaborative Approach. ACM Transactions on Architecture and Code
Optimization (TACO) 7, 4 (Dec. 2011). 3

[HNL∗13] HOMESCU A., NEISIUS S., LARSEN P., BRUNTHALER S.,
FRANZ M.: Profile-Guided Automated Software Diversity. In Interna-
tional Symposium on Code Generation and Optimization (CGO) (2013),
pp. 1–11. 5, 11

[JTLL10] JIN G., THAKUR A. V., LIBLIT B., LU S.: Instrumentation
and Sampling Strategies for Cooperative Concurrency Bug Isolation. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) (2010), pp. 241–255. 3

[Kar21] KARLSSON B.: Renderdoc v1.12, January 2021. URL: https:
//renderdoc.org/docs/index.html. 7

[KBR17] KESSENICH J., BALDWIN D., ROST R.: The OpenGL® Shad-
ing Language, May 2017. URL: https://www.khronos.org/
registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf. 2

[KKOW00] KISUKI T., KNIJNENBURG P., O’BOYLE M., WIJSHOFF
H.: Iterative Compilation in Program Optimization. In Compilers for
Parallel Computers (2000), pp. 35–44. 10

[LAHC06] LAU J., ARNOLD M., HIND M., CALDER B.: Online Per-
formance Auditing: Using Hot Optimizations without Getting Burned.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (2006), pp. 239–251. 2, 7

[Lib04] LIBLIT B. R.: Cooperative Bug Isolation. PhD thesis, University
of California, Berkeley, Dec. 2004. 2, 3, 4

[LMnJC20] LAZCANO R., MADROÑAL D., JUAREZ E., CLAUSS P.:
Runtime Multi-Versioning and Specialization inside a Memoized Spec-
ulative Loop Optimizer. In International Conference on Compiler Con-
struction (2020), pp. 96–107. 2, 7

[LNZ∗05] LIBLIT B., NAIK M., ZHENG A. X., AIKEN A., JORDAN
M. I.: Scalable Statistical Bug Isolation. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (2005),
pp. 15–26. 3

[LP20] LEOBAS G. V., PEREIRA F. M. Q.: Semiring Optimizations: Dy-
namic Elision of Expressions with Identity and Absorbing Elements. In
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) (Nov. 2020). 2

[Mic18a] MICROSOFT CORPORATION: Atomic Iadd, May 2018. URL:
https://docs.microsoft.com/en-us/windows/win32/
direct3dhlsl/atomic-iadd--sm5---asm-. 5

[Mic18b] MICROSOFT CORPORATION: High Level Shading Language,
May 2018. URL: https://docs.microsoft.com/en-us/
windows/win32/direct3dhlsl/dx-graphics-hlsl. 2

[Mic18c] MICROSOFT CORPORATION: Shader Model 4 As-
sembly (DirectX HLSL) - dcl_globalFlags, May 2018. URL:
https://docs.microsoft.com/en-us/windows/win32/
direct3dhlsl/dcl-globalflags. 6

[Mic18d] MICROSOFT CORPORATION: Shader Model 5 Assembly (Di-
rectX HLSL), May 2018. URL: https://docs.microsoft.com/
en-us/windows/win32/direct3dhlsl/shader-model-
5-assembly--directx-hlsl-. 8

[Mic18e] MICROSOFT CORPORATION: Timing, May 2018. URL:
https://docs.microsoft.com/en-us/windows/win32/
direct3d12/timing. 7

[Mic18f] MICROSOFT CORPORATION: Variable Syntax, May
2018. URL: https://docs.microsoft.com/en-
us/windows/win32/direct3dhlsl/dx-graphics-hlsl-
variable-syntax. 6

[Mic19a] MICROPROCESSOR STANDARDS COMMITTEE: 754-
2019 - IEEE Standard for Floating-Point Arithmetic, July 2019.
URL: https://ieeexplore.ieee.org/servlet/opac?
punumber=8766227. 6

[Mic19b] MICROSOFT CORPORATION: DirectX Intermediate Lan-
guage, 2019. URL: https://github.com/Microsoft/
DirectXShaderCompiler/blob/master/docs/DXIL.rst.
8

[Mic19c] MICROSOFT CORPORATION: Profile-Guided Optimizations,
2019. URL: https://github.com/MicrosoftDocs/cpp-
docs/blob/master/docs/build/profile-guided-
optimizations.md. 2

[MR95] MOTWANI R., RAGHAVAN P.: Randomized Algorithms. Cam-
bridge University Press, 1995. 9

[MWD00] MUTH R., WATTERSON S. A., DEBRAY S. K.: Code Spe-
cialization Based on Value Profiles. In International Symposium on
Static Analysis (SAS) (2000), pp. 340–359. 2

[NVI21a] NVIDIA CORPORATION: Nsight 2021.1, January 2021. URL:
https://developer.nvidia.com/nsight-graphics. 7

[NVI21b] NVIDIA CORPORATION: Parallel Thread Execution ISA: Ap-
plication Guide, March 2021. URL: https://docs.nvidia.com/
cuda/pdf/ptx_isa_7.2.pdf. 7

[PCL11] PRADELLE B., CLAUSS P., LOECHNER V.: Adaptive Runtime
Selection of Parallel Schedules in the Polytope Model. In High Perfor-
mance Computing Symposium (2011), pp. 81–88. 2, 7

[RSU∗20] RANGAN R., STEPHENSON M. W., UKARANDE A.,
MURTHY S., AGARWAL V., BLACKSTEIN M.: Zeroploit: Exploiting
Zero Valued Operands in Interactive Gaming Applications. ACM Trans-
actions on Architecture and Code Optimization (TACO) 17, 3 (Aug.
2020). 2, 6

[SR21] STEPHENSON M., RANGAN R.: PGZ: Automatic Zero-Value
Code Specialization. In Proceedings of the International Conference on
Compiler Construction (CC) (2021), p. 36–46. 2, 6, 7

[SRYVH10] STEPHENSON M. W., RANGAN R., YASHCHIN E.,
VAN HENSBERGEN E.: Statistically Regulating Program Behavior via
Mainstream Computing. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO) (2010), p. 238–247. 3

[Ste20] Steam. https://store.steampowered.com/stats/
Steam-Game-and-Player-Statistics, November 2020. Ac-
cessed: 2020-11-15. 9

[Tec18] TECHPOWERUP: NVIDIA Geforce RTX 2080, September
2018. URL: https://www.techpowerup.com/gpu-specs/
geforce-rtx-2080.c3224. 7

[WCL17] WEN S., CHABBI M., LIU X.: REDSPY: Exploring Value Lo-
cality in Software. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (2017),
pp. 47–61. 2

[WH12] WU D., HAVEN J.: Using Homomorphic Encryption for Large
Scale Statistical Analysis. FHE-SI-Report, Univ. Stanford, Stanford, CA,
USA, Tech. Rep. TR-dwu4 (2012). 12

[YYL∗20] YOU X., YANG H., LUAN Z., QIAN D., LIU X.: ZeroSpy:
Exploring Software Inefficiency with Redundant Zeros. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC) (2020). 2

[ZHMC∗20] ZHOU K., HAO Y., MELLOR-CRUMMEY J., MENG X.,
LIU X.: GVProf: A Value Profiler for GPU-Based Clusters. In In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2020). 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

83

https://www.wired.com/story/cloud-gaming-infrastructure-arms-race/
https://www.wired.com/story/cloud-gaming-infrastructure-arms-race/
https://gcc.gnu.org/wiki/PDO
https://renderdoc.org/docs/index.html
https://renderdoc.org/docs/index.html
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/atomic-iadd--sm5---asm-
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/atomic-iadd--sm5---asm-
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dcl-globalflags
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dcl-globalflags
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/shader-model-5-assembly--directx-hlsl-
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/shader-model-5-assembly--directx-hlsl-
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/shader-model-5-assembly--directx-hlsl-
https://docs.microsoft.com/en-us/windows/win32/direct3d12/timing
https://docs.microsoft.com/en-us/windows/win32/direct3d12/timing
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-variable-syntax
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-variable-syntax
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-variable-syntax
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://github.com/Microsoft/DirectXShaderCompiler/blob/master/docs/DXIL.rst
https://github.com/Microsoft/DirectXShaderCompiler/blob/master/docs/DXIL.rst
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/build/profile-guided-optimizations.md
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/build/profile-guided-optimizations.md
https://github.com/MicrosoftDocs/cpp-docs/blob/master/docs/build/profile-guided-optimizations.md
https://developer.nvidia.com/nsight-graphics
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.2.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.2.pdf
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224

