Show simple item record

dc.contributor.authorDiziol, R.en_US
dc.contributor.authorBender, J.en_US
dc.contributor.authorBayer, D.en_US
dc.contributor.editorA. Bargteil and M. van de Panneen_US
dc.date.accessioned2013-10-31T10:29:07Z
dc.date.available2013-10-31T10:29:07Z
dc.date.issued2011en_US
dc.identifier.isbn978-1-4503-0923-3en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA11/237-246en_US
dc.description.abstractWe introduce an efficient technique for robustly simulating incompressible objects with thousands of elements in real-time. Instead of considering a tetrahedral model, commonly used to simulate volumetric bodies, we simply use their surfaces. Not requiring hundreds or even thousands of elements in the interior of the object enables us to simulate more elements on the surface, resulting in high quality deformations at low computation costs. Theelasticity of the objects is robustly simulated with a geometrically motivated shape matching approach which is extended by a fast summation technique for arbitrary triangle meshes suitable for an efficient parallel computation on the GPU. Moreover, we present an oscillation-free and collision-aware volume constraint, purely based on the surface of the incompressible body. The novel heuristic we propose in our approach enables us to conserve the volume, both globally and locally. Our volume constraint is not limited to the shape matching method and can be used with any method simulating the elasticity of an object. We present several examples which demonstrate high quality volume conserving deformations and compare the run-times of our CPU implementation, as well as our GPU implementation with similar methods.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometryand Object Modeling-Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics andRealism-Animationen_US
dc.titleRobust Real-Time Deformation of Incompressible Surface Meshesen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record