Non-rigid 3D Shape Retrieval

Eurographics DL Repository

Show simple item record

dc.contributor.author Lian, Z. en_US
dc.contributor.author Zhang, J. en_US
dc.contributor.author Choi, S. en_US
dc.contributor.author ElNaghy, H. en_US
dc.contributor.author El-Sana, J. en_US
dc.contributor.author Furuya, T. en_US
dc.contributor.author Giachetti, A. en_US
dc.contributor.author Guler, R. A. en_US
dc.contributor.author Lai, L. en_US
dc.contributor.author Li, C. en_US
dc.contributor.author Li, H. en_US
dc.contributor.author Limberger, F. A. en_US
dc.contributor.author Martin, R. en_US
dc.contributor.author Nakanishi, R. U. en_US
dc.contributor.author Neto, A. P. en_US
dc.contributor.author Nonato, L. G. en_US
dc.contributor.author Ohbuchi, R. en_US
dc.contributor.author Pevzner, K. en_US
dc.contributor.author Pickup, D. en_US
dc.contributor.author Rosin, P. en_US
dc.contributor.author Sharf, A. en_US
dc.contributor.author Sun, L. en_US
dc.contributor.author Sun, X. en_US
dc.contributor.author Tari, S. en_US
dc.contributor.author Unal, G. en_US
dc.contributor.author Wilson, R. C. en_US
dc.contributor.editor I. Pratikakis and M. Spagnuolo and T. Theoharis and L. Van Gool and R. Veltkamp en_US
dc.date.accessioned 2015-04-27T11:03:40Z
dc.date.available 2015-04-27T11:03:40Z
dc.date.issued 2015 en_US
dc.identifier.uri http://dx.doi.org/10.2312/3dor.20151064 en_US
dc.description.abstract Non-rigid 3D shape retrieval has become a research hotpot in communities of computer graphics, computer vision, pattern recognition, etc. In this paper, we present the results of the SHREC'15 Track: Non-rigid 3D Shape Retrieval. The aim of this track is to provide a fair and effective platform to evaluate and compare the performance of current non-rigid 3D shape retrieval methods developed by different research groups around the world. The database utilized in this track consists of 1200 3D watertight triangle meshes which are equally classified into 50 categories. All models in the same category are generated from an original 3D mesh by implementing various pose transformations. The retrieval performance of a method is evaluated using 6 commonly-used measures (i.e., PR-plot, NN, FT, ST, E-measure and DCG.). Totally, there are 37 submissions and 11 groups taking part in this track. Evaluation results and comparison analyses described in this paper not only show the bright future in researches of non-rigid 3D shape retrieval but also point out several promising research directions in this topic. en_US
dc.publisher The Eurographics Association en_US
dc.subject H.3.3 [Computer Graphics] en_US
dc.subject Information Systems en_US
dc.subject Information Search and Retrieval en_US
dc.title Non-rigid 3D Shape Retrieval en_US
dc.description.seriesinformation Eurographics Workshop on 3D Object Retrieval en_US
dc.description.sectionheaders SHREC'15 Tracks en_US
dc.identifier.doi 10.2312/3dor.20151064 en_US
dc.identifier.pages 107-120 en_US


Files in this item

Pay-Per-View via TIB Hannover:

Try if this item/paper is available.

This item appears in the following Collection(s)

Show simple item record

Search Eurographics DL


Browse

My Account