• Login
    View Item 
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2019
    • View Item
    •   Eurographics DL Home
    • Graphics Dissertation Online
    • 2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lightweight material acquisition using deep learning

    Thumbnail
    View/Open
    Lightweight material acquisition using deep learning Thesis, Valentin Deschaintre (70.13Mb)
    Date
    2019-11
    Author
    Deschaintre, Valentin
    Item/paper (currently) not available via TIB Hannover.
    Metadata
    Show full item record
    Abstract
    Whether it is used for entertainment or industrial design, computer graphics is ever more present in our everyday life. Yet, reproducing a real scene appearance in a virtual environment remains a challenging task, requiring long hours from trained artists. A good solution is the acquisition of geometries and materials directly from real world examples, but this often comes at the cost of complex hardware and calibration processes. In this thesis, we focus on lightweight material appearance capture to simplify and accelerate the acquisition process and solve industrial challenges such as result image resolution or calibration. Texture, highlights, and shading are some of many visual cues that allow humans to perceive material appearance in pictures. Designing algorithms able to leverage these cues to recover spatially-varying bi-directional reflectance distribution functions (SVBRDFs) from a few images has challenged computer graphics researchers for decades. We explore the use of deep learning to tackle lightweight appearance capture and make sense of these visual cues. Once trained, our networks are capable of recovering per-pixel normals, diffuse albedo, specular albedo and specular roughness from as little as one picture of a flat surface lit by the environment or a hand-held flash. We show how our method improves its prediction with the number of input pictures to reach high quality reconstructions with up to 10 images - a sweet spot between existing single-image and complex multi-image approaches - and allows to capture large scale, HD materials. We achieve this goal by introducing several innovations on training data acquisition and network design, bringing clear improvement over the state of the art for lightweight material capture.
    URI
    https://diglib.eg.org:443/handle/10.2312/2632983
    Collections
    • 2019

    Eurographics Association copyright © 2013 - 2020 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2020 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA