Data‐Parallel Decompression of Triangle Mesh Topology

No Thumbnail Available
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association and Blackwell Publishing Ltd.
Abstract
We propose a lossless, single‐rate triangle mesh topology codec tailored for fast data‐parallel GPU decompression. Our compression scheme coherently orders generalized triangle strips in memory. To unpack generalized triangle strips efficiently, we propose a novel parallel and scalable algorithm. We order vertices coherently to further improve our compression scheme. We use a variable bit‐length code for additional compression benefits, for which we propose a scalable data‐parallel decompression algorithm. For a set of standard benchmark models, we obtain (min: 3.7, med: 4.6, max: 7.6) bits per triangle. Our CUDA decompression requires only about 15% of the time it takes to render the model even with a simple shader.We propose a lossless, single‐rate triangle mesh topology codec tailored for fast data‐parallel GPU decompression. Our compression scheme coherently orders generalized triangle strips in memory. To unpack generalized triangle strips efficiently, we propose a novel parallel and scalable algorithm. We order vertices coherently to further improve our compression scheme. We use a variable bit‐length code for additional compression benefits, for which we propose a scalable data‐parallel decompression algorithm. For a set of standard benchmark models, we obtain (min: 3.7, med: 4.6, max: 7.6) bits per triangle. Our CUDA decompression requires only about 15% of the time it takes to render the model even with a simple shader.
Description

        
@article{
10.1111:j.1467-8659.2012.03221.x
, journal = {Computer Graphics Forum}, title = {{
Data‐Parallel Decompression of Triangle Mesh Topology
}}, author = {
Meyer, Quirin
 and
Keinert, Benjamin
 and
Sußner, Gerd
 and
Stamminger, Marc
}, year = {
2012
}, publisher = {
The Eurographics Association and Blackwell Publishing Ltd.
}, ISSN = {
1467-8659
}, DOI = {
10.1111/j.1467-8659.2012.03221.x
} }
Citation
Collections