Show simple item record

dc.contributor.authorWu, Qiaoyunen_US
dc.contributor.authorXu, Kaien_US
dc.contributor.authorWang, Junen_US
dc.contributor.editorJu, Tao and Vaxman, Amiren_US
dc.description.abstractThe Constructive Solid Geometry (CSG) tree, encoding the generative process of an object by a recursive compositional structure of bounded primitives, constitutes an important structural representation of 3D objects. Therefore, automatically recovering such a compositional structure from the raw point cloud of an object represents a high-level reverse engineering problem, finding applications from structure and functionality analysis to creative redesign. We propose an effective method to construct CSG models and trees directly over raw point clouds. Specifically, a large number of hypothetical bounded primitive candidates are first extracted from raw scans, followed by a carefully designed pruning strategy. We then choose to approximate the target CSG model by the combination of a subset of these candidates with corresponding Boolean operations using a binary optimization technique, from which the corresponding CSG tree can be derived. Our method attempts to consider the minimal description length concept in the point cloud analysis setting, where the objective function is designed to minimize the construction error and complexity simultaneously. We demonstrate the effectiveness and robustness of our method with extensive experiments on real scan data with various complexities and styles.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectI.3.3 [Computer Graphics]
dc.subjectShape Modeling
dc.subjectProcedural modeling
dc.titleConstructing 3D CSG Models from 3D Raw Point Cloudsen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersPoint Clouds and Reconstruction

Files in this item


This item appears in the following Collection(s)

  • 37-Issue 5
    Geometry Processing 2018 - Symposium Proceedings

Show simple item record