On shape design and optimization of gerotor pumps

J. C. Pareja-Corcho1,4, M. Bartoň2,3, A. Pedrera-Busselo5, D. Mejia-Parra1,6, A. Moreno1,6, J. Posada1,6

1Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain
2BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
3Ikerbasque – Basque Foundation for Sciences, Maria Diaz de Haro 3, 48013 Bilbao, Basque Country, Spain
4Faculty of Informatics, University of the Basque Country (UPV/EHU), Manuel Lardizabal 1, 20018 Donostia-San Sebastian, Spain
5Egile Innovative Solutions, Kurutz-Gain Pol. 12, 20850 Mendaro, Spain

Abstract

A gerotor pump is a two-piece mechanism where two rotational components, interior and exterior, engage each other via a rotational motion to transfer a fluid in a direction parallel to their rotational axes. A natural question arises on what shape of the gerotor is the optimal one in the sense of maximum fluid being pumped for a unit of time, given the constraint of a fixed material needed to manufacture the pump. As there is no closed-formula to answer this question, we propose a new algorithm to design and optimize the shape of gerotor pumps to be as efficient as possible. The proposed algorithm is based on a fast construction of the envelope of the interior component and subsequent optimization. We demonstrate our algorithm on a benchmark gerotor and show that the optimized solution increases the estimated flowrate by 16%. We also use our algorithm to study the effect of the number of teeth on the cavity area of a gerotor.

CCS Concepts

\begin{itemize}
\item Computing methodologies \rightarrow Modeling methodologies;
\item Mathematics of computing \rightarrow Mathematical optimization;
\item Applied computing \rightarrow Computer-aided design;
\end{itemize}

1. Introduction

Curved geometries appear in various industries, automobile sector being a prime example, where compact yet strong and efficient components are of a major importance. These object are, for example, components of car engines or gearboxes, and their performance affects the efficiency of the whole machine. An example of such a mechanical component, a gerotor pump, is shown in Fig. 1.

The gerotor pump, or gerotor in short, consists of two major components, the interior and the exterior part, that are extrusions of 2D profiles in the direction of a common rotational axis. Both profiles are rotationally symmetric, however, their axis do not coincide but differ by the so called eccentricity distance. This axial deviation causes that, when properly designed, the internal component enrolls along the external counterpart in a hypocycloidal motion. The cavity between the two parts is filled by a fluid and, as the two parts engage each other, the fluid is pumped in a direction parallel to their rotational axes, as in Fig. 2.

Current trends in high-tech industry point towards new designs that allow using less material for components without compromising their quality or performance specifications. To make the manufacturing process as efficient as possible, one typically aims to maximize performance of the workpiece under constraints of the total material being used. In the context of gerotors, one may naturally ask about the optimal shape of the two components, as well as the optimal number of teeth that maximize fluid transfer under the weight and size constraints typical for this particular workpiece.

The proposed research studies this type of problem and proposes an optimization-based pipeline that looks for the most efficient gerotor. Our algorithm is based on several ingredients, namely...
an efficient computation of the external profile of the pump (i.e. envelope of the internal profile), followed by the construction of the constraint manifold that corresponds to a fixed amount of material used for the internal profile, and finalized by a non-linear optimization. The main technical contributions of this paper are:

- An efficient algorithm to calculate the internal profile’s envelope is proposed. We show that envelope points correspond to the outer extrema of a distance function from the instantaneous center of rotation, which simplifies considerably the outer profile construction and speeds up the whole gerotor design cycle.
- The search for the best shape of the gerotor is formulated as a constrained optimization problem, the physical feasibility of the gerotor being a pair of hypersurfaces, that delimit a search space in 3D, in which gerotors of constant material form a certain manifold. We build these manifolds in an efficient manner and explore them to find gerotors with maximum flowrate.
- The proposed algorithm is applied on an existing benchmark workpiece and increases its simulated flowrate by 16% while keeping the area (and weight) of the pump constant.
- Our optimization pipeline is run for several values of the number of teeth and confirms the engineering experience on the design of gerotor pumps, namely that the maximum eccentricity is strongly correlated with the maximum flowrate.

2. Related works

Gear sets that move fluids around have been studied and used for centuries: from the so-called Archimedes pump [SH03] used in the ancient Nile, over the hydraulic gear sets used by Baron Armstrong in the bridges over the river Tyne in Victorian England [McN74], to the ever-smaller and ever-lighter gear pumps and engines of modern high-tech automotive [KPJ00,RN15], medical [LSTS’14, KGS15], and aerospace [IB12] industries. Given that gerotor pumps are relatively simple (only two moving parts), compact and robust, they have attracted a lot of attention in the past decade for industrial applications, see review papers on gerotor applications by Gamez-Montero et al. [GMCC19] and Rundo [Run17]. The related studies address mainly three major areas: design, simulation, and optimization.

Design. In theory any smooth, closed, and non-self-intersecting curve could define the internal profile of a gerotor pump. However, three main types are defined: epitrochoidal [PBS89], hypotrochoidal [HH07] and cycloidal [CKL’12]. All three are, however, based on the same principle: a moving circle rolls without slipping on the inside/outside of a static circle and a point on the moving circle traces the curve of the profile. See Litvin and Feng [LF96] for a comprehensive comparison and parametric expressions for all three types. Litvin and Feng [LF96] present the necessary conditions for the internal profile to be cusp-free and therefore usable for practical applications.

Once the internal profile has been defined, the external profile can be calculated in one of two ways: by a set of Z circular arcs linked together in a central symmetric pattern, see Fabiani et al. [Fabiani99]; or by the outermost envelope to the family of curves generated by the motion of the internal profile, see Yan et al. [YYT09]. The algorithms presented in this paper are developed using an hypotrochoidal (aka hypocycloidal) profile but are suitable for other types of profiles.

Simulation. Recent approaches to gerotor simulation use computational fluid dynamics to assess the performance of a particular design, see Altare et al. [AR16], Castilla et al. [CGMRC17], Pellegri et al. [PVF’17]. However, due to the high computational cost of CFD simulations, analytical methods have been developed to evaluate certain aspects of gerotor pumps without the need to resort to CFD-based models. These aspects include: flow estimation, see Lingeswaranurthy et al. [LJEK11]; forces and moments, see Ivanovic et al. [IDMC10]; and wear on profiles, see Kwon et al. [KK08]. These analytical models respond to a constantly-growing trend in gerotor design and analysis, and in fact industry as a whole: the reduction of design, simulation, and fabrication time of to-be-manufactured components. Our paper addresses this very same issue from the perspective of geometrical optimization.

Optimization. Optimization techniques for gerotors have gained popularity in recent years. Several authors have contributed on optimization studies for gerotor shapes on hypocycloidal, see Kwon et al. [KK11]; epitrochoidal, see Karamouz et al. [KRFM12]; or some rare assymetric profiles, see De Martin et al. [DMJS99]. These profiles are mostly optimized to reduce wear, flow irregularity and noise, see Robison et al. [RV18,RV19]. These approaches, however, are mainly focused on circular-based external profiles. We intend to maximize the flowrate by optimizing the shape of the gerotor using the envelope-based external profile.

Another related family of research deals with matching gears and/or screw rotors, see e.g. [KSS06, LF97, SSKM11, LF04] and other relevant references cited therein. A frequently used approach to design these pair mechanism is to design one part (male or female part in the case of screw rotors) and consider its relative mo-
tion with respect to the other, yet unknown part. This boils down to a 2D gearing problem. The other part is then defined as an envelope of the one-parameter family of positions of the first part under a cycloidal motion [SSKM11]. This approach has also been used recently for design of 2D gears [MSE20]. For two given 2D shapes to form a pair of non-circular gears, an optimization-based framework that looks for position of rotational centers that admit gearing configuration is presented in [XFS*20]. An algorithm to efficiently compute envelopes of moving solids is proposed in [SAJ21].

The rest of the paper is organized as follows. The modeling of gerotor pumps using cycloidal movements of circles is introduced in Section 3. The calculation of the external envelope is discussed in Section 4 and the shape optimization pipeline is presented in Section 5. The optimization results and benchmark comparison are presented in Section 6 and the limitations and concluding remarks are drawn in Section 7.

3. Geometric modeling of a gerotor pump

The internal profile of the gerotor is defined by an epicycloidal curve (i.e. the locus of a fixed point on a circle that rolls around another circle), see Robison and Vacca [RV21]; and the external profile can be constructed in one of two ways: by a set of circular arcs linked together in a central symmetric pattern, see Fig. 3(a); or by the envelope of the family of curves produced by the movement of the internal profile, see Fig. 3(b).

Figure 3: Two types of external profiles are common in industrial gerotors: circular arc-based profile (left) and envelope-based profile (right). In this paper we focus on the envelope type profile.

3.1. A hypocycloidal gerotor profile

The gerotor internal profile is formed by a hypocycloidal motion of two circles, see Fig. 4. The motion is determined by a movable circle C_2 rolling along a fixed circle C_1 without slipping. Circle C_i ($i = 1, 2$) is defined by its center O_i and radius r_i. The centers of the circles are at all times separated by a constant distance e, known as the eccentricity, i.e., $\|O_1 - O_2\| = e$. Since the instantaneous center of rotation, I, is the contact point of C_1 and C_2, it lies on the line O_1O_2.

Consider now a third circle C_3 lying in the moving frame, with a fixed position with respect to the movable circle C_2. Let P_i be its center and S its radius, recall Fig. 4. Consider the intersection point of the circle C_2 and the line P_iI, i.e., $r = C_2 \cap P_iI$. The motion of r, as the C_1 and C_2 engage in a hypocycloidal motion, forms a curve, $r(\theta)$, $\theta \in [0, 2\pi]$.

When closing one turn of the hypocycloidal motion ($\theta \in [0, 2\pi]$), the internal profile curve $r(\theta)$ is required to be a closed curve, with a specific number of teeth. Let $Z - 1$ be this number, then radii r_1, r_2, and S have to satisfy certain constraints (otherwise $r(\theta) \neq r(2\pi)$), namely $r_1 = e(Z - 1)$ and $r_2 = r_1 + e$ [MMRN00]. The choice of $Z - 1$ as the number of teeth of the internal gerotor profile is, as we will see later, in accordance with the fact that the external profile consists of Z teeth.

Since the rolling without slipping is a composition of two rotations, two angles are needed to define the motion. Angle α defines the pure rotation of O_2 around O_1 and angle θ defines the rotation of circle C_2 around O_2. The relationship between these two angles is given by $\theta = \alpha/Z$ and is set by the velocity condition for no-slip rolling between the two circles.

Parametrizing the moving point r, recall Fig. 4, one obtains

$$r_x(\theta) = \cos(\theta)(e - \frac{S r_2}{m}) - R_2 \cos(\theta)\left(\frac{S}{m} - 1\right)$$

$$r_y(\theta) = R_2 \sin(\theta)\left(\frac{S}{m} - 1\right) - \sin(Z \theta)\left(e - \frac{S r_2}{m}\right)$$

where

$$m = \sqrt{R_2^2 + 2 \cos(\theta Z - 1)} R_2 r_2 + r_2^2$$

and $\theta \in [0, 2\pi]$. After replacing the definition of r_2 into Equation 1, we notice that the shape of the internal profile $r(\theta)$ depends only on the eccentricity value e, length R_2, radius S and the desired number of teeth Z of the external profile. These shape parameters affect how the profile looks like, see Fig. 5, and consequently affect the performance of the whole pump. We aim to optimize the triplet of these shape parameters to find a profile that maximizes the performance of the pump. Before we get to the optimization, we need to describe how the external profile is generated, which we do next.
3.2. Planar kinematics of gerotors

As the gerotor operates, the internal profile defined by \(r(\theta) \) engages in epicycloidal motion with an external profile, see Fig. 6. To describe this movement we consider the curve \(r(\theta) \) as moving guided by the rolling without slipping of circle \(C_1 \) inside circle \(C_2 \), thus generating a one-parameter family of curves.

![Figure 6: Left: Five discrete samples \((\phi = 0, 30, 60, 90, 120)\) from the family of internal profiles \(r(\theta, \phi) \) is shown. Right: The corresponding positions of circle \(C_1 \). For the whole (smooth) motion, \(C_1 \) moves along \(C_2 \) in a epicycloidal motion. The trajectory of \(O \) is a circle centered at \(O_2 \) and with radius \(e \).](image)

The rolling without slipping is defined as a composition of two rigid transformation \(M = M_2(\phi)M_1(\phi) \). As the motion depends on one parameter (\(\phi \)) and the internal profile is parametrized by another (\(\theta \)), the family of curves generated by the motion of \(r(\theta) \) can be interpreted as a bivariate vector function

\[
r(\theta, \phi) = T^2_2(T^1_1(r(\theta)))
\]

that is a composition of two transformations \(T^1_1 \) and \(T^2_2 \) (dependent on \(\phi \)) applied to \(r(\theta) \). The first transformation \(T^1_1 \) is a rotation of \(r(\theta) \) around \(O_1 \) followed by a translation by a vector \(c \), and the second transformation \(T^2_2 \) is a rotation around the coordinate system of \(O_2 \), that is,

\[
T^o_1(x) = M^o_1x + c \\
T^o_2(x) = M^o_2x
\]

where

\[
M^o_1 = \begin{pmatrix}
\cos(\phi) & -\sin(\phi) \\
\sin(\phi) & \cos(\phi)
\end{pmatrix}, \\
M^o_2 = \begin{pmatrix}
\cos(\frac{\pi\phi}{2} - 1) & -\sin(\frac{\pi\phi}{2} - 1) \\
\sin(\frac{\pi\phi}{2} - 1) & \cos(\frac{\pi\phi}{2} - 1)
\end{pmatrix}
\]

and \(c \) is the vector from \(O_2 \) to \(O_1 \), i.e., \(c = O_1 - O_2 \).

3.3. Envelope of a family of curves

Consider a closed curve in \(r \) embedded in the two-dimensional Euclidean plane \(\mathbb{E}^2 \), \(r : I \to \mathbb{E}^2 \), that undergoes a rigid body motion, parametrized by the motion parameter \(\phi \). This motion can be interpreted as a bivariate vector-valued function \(r(\theta, \phi) \), recall Eq. (2).

A curve \(e \) that touches this one-parameter system of curves is called the envelope (of the system) [PP00]. Algebraically, this curve is one entity, however, in our applied problem, we should distinguish the branch that contains all the curves from the system. That is, we say that the \(e_o \) is the outermost envelope of \(r(\theta, \phi) \), if \(r(\theta, \phi) \) is fully contained by \(e_o \), for all \(\phi \). The inclusion is the classical inclusion in the context of two closed sets. To be well-defined, one needs to assume that the curve is closed and the motion also creates a closed loop (and these assumptions are met in our gerotor pump case).

As a simple example of an envelope, one can think of an ellipse being rotated around a point that lies outside the ellipse. The envelope \(e \) is a pair of concentric circles, and the outermost envelope \(e_o \) is the circle with the larger radius. For more complicated curves, the envelope can naturally have several branches (disconnected components), however, in our gerotor case, the envelope has only two branches, the internal and the external, see Fig. 7.

An interesting insight on construction of envelopes of 2D curves is as follows [PP00]: Consider the \(xy \)-plane that contains the internal profile, and the time \(\phi \) as the third, vertical, axis. Then the motion of the curve can be visualized as a one-parameter family of curves in planes parallel to the \(xy \)-plane and the \(r(\theta, \phi) \) defines a surface, each horizontal slice of the surface being the position of the curve in the particular time instant \(\phi \), see Fig. 8.

![Figure 7: Projection to the \(xy \) plane of \(r(\theta, \phi) \) (sampled by \(\phi \)-curves). The borders of the projected region are part of the envelope, but we are only interested in the outermost envelope \(e_o \).](image)

Angle \(\phi = 0 \) defines the initial position of the internal gerotor and \(\phi = 2\pi \frac{1}{2} \) defines the next engaged position for the internal rotor. Setting \(\theta = \text{const} \) retrieves a curve that corresponds to the trace of a single point in the gerotor profile as it moves under the rigid body motion.

![Figure 8: Spatial interpretation of the function \(r(\theta, \phi) \). The horizontal \(\phi \)-curves represent gerotor profiles at a particular time \(\phi \); we show \(\phi = 0, 2\pi \frac{1}{2} \) (red). The \(\theta \)-curve (green) represents the trace of a single point of the gerotor profile under the gerotor’s motion.](image)

The tangent plane \(T \) at any point of \(r(\theta, \phi) \) is spanned by the derivative vectors \(\partial r/\partial \theta \) and \(\partial r/\partial \phi \), i.e., its normal vector is \(n_T = \partial r/\partial \theta \times \partial r/\partial \phi \). For any point of \(r(\theta, \phi) \) to lie on the envelope, its tangent plane \(T \) must project as a line into the \(xy \) plane [PP00], which is equivalent to \(n_T \) being parallel to the \(xy \) plane. This is true when the orthogonal complement of the motion derivative vector \(\partial r/\partial \phi \) is orthogonal to the angular derivative vector \(\partial r/\partial \theta \) (their dot product is zero), i.e.,

\[
\begin{pmatrix}
\partial r(\theta, \phi) \\
\partial \theta \\
\partial r(\theta, \phi) \\
\partial \phi
\end{pmatrix} = 0.
\]
However, the envelope given by (5) may have several branches, recall Fig. 7, and we are only interested in the points on the outermost branch e_o of the envelope e. This outermost envelope forms the conjugated (matching) profile to the internal profile curve $r(\theta)$, under the motion of the gerotor pump.

Since there is not a closed-form expression to retrieve this outermost envelope, we propose a numerical algorithm that calculates e_o efficiently.

4. Calculation of the external profile

In this section, we discuss the computation of the external part of the gerotor. As our objective is to optimize the shape of the whole gerotor, we need to calculate the external profile rather efficiently as it will be called in our optimization routine many times.

First of all, we exploit the fact that the object is rotationally symmetric and therefore one can use only a certain part of the internal profile to compute the points of the envelope, and then apply rotation to complete the whole external profile. We define a tooth profile as the segment of the curve that contains a single convex and single concave region, see Figure 9. To characterize the geometry and kinematics of a whole gerotor, it suffices to study a single tooth profile.

![Figure 9: The tooth profile (red) is the basic unit of symmetry in the gerotor. To study the motion of the internal profile it suffices to consider the motion (blue) of an internal tooth profile (red).](image)

Another important fact about gerotors is that an internal profile that has $Z - 1$ teeth is matched with an external profile with Z teeth, see Fig. 10 and e.g. [Col74]. Moreover, at each time instant, they stay in a tangential contact at $Z - 1$ points, forming $Z - 1$ chambers that transfer the fluid. Another fact is that each point of the internal profile $r(\theta)$ will, at a certain time instant ϕ, become a point of e_o. This fact comes from the functionality of the gerotor and the fact that the chambers transfer the fluid by "pushing forward" the common point of tangency as the two profiles are being tangentially engaged one to another.

Consider now again the internal profile $r(\theta)$ that consists of $Z - 1$ repetitive teeth. Alternatively, one may segment $r(\theta)$ into $2(Z - 1)$ convex/concave segments, separated by the $2(Z - 1)$ inflection points, see Figure 10.

To compute the envelope, consider Eq. (5), which gives all envelope points (internal and external) and one needs to detect those points that can contribute only to the outermost envelope. Fixing ϕ and solving (5) for θ, one obtains a set of stationary parameters (and consequently points) that can form the outermost envelope. These points can lie i) in the convex part of $r(\theta)$ (magenta), ii) the concave part of $r(\theta)$ (green), or iii) be inflection points of $r(\theta)$ (blue). Line Ir is always normal to the time derivative vector $\partial r/\partial \theta$.

![Figure 10: Set of stationary points. These points can lie i) in the convex part of $r(\theta)$ (magenta), ii) the concave part of $r(\theta)$ (green), or iii) be inflection points of $r(\theta)$ (blue). Line Ir is always normal to the time derivative vector $\partial r/\partial \theta$.](image)

The outermost envelope e_o is also a rotational symmetric closed curved. It consists of $2Z$ convex and concave segments. While the concave parts can be computed using both the convex and concave parts of $r(\theta)$, the convex parts of e_o can be generated by only the convex parts of $r(\theta)$. This claim directly follows from the fact that e_o is the outermost envelope and has to be tangential to $r(\theta)$. By contradiction, if some $r(\theta)$ of the concave part of $r(\theta)$ is also part of e_o, then for arbitrarily small $\epsilon \in \mathbb{R}$, $\epsilon > 0$, the point $r(\theta + \epsilon)$ lies outside e_o.

Therefore, to compute e_o, it is sufficient to consider only the convex segment of $r(\theta)$ between two inflection points $r(\theta_i)$ and $r(\theta_{i+1})$, which corresponds to the θ interval between two blue points, see Fig. 11; we take the interval that contains $\theta = 0$ value.

Overview of the algorithm. Consider now the internal profile at an initial time instant $r(\theta, \phi = 0)$. Note that Eq. (5) is one semi-algebraic constraint in two variables and one could use a proper solver to numerically trace the solutions [BEH11]. However, such a global solver is an overkill as we do not need the internal branch, and would be non-trivial to exploit the symmetry. We already established that only convex parts of the curve $r(\theta)$ will contribute to the outermost envelope, and that such an envelope can be characterized using a single tooth profile. Therefore we divide $r(\theta, 0)$ into $2(Z - 1)$ convex and concave segments. We select a convex segment, which we denote by $r^+(\theta)$ and proceed with a numerical tracing of a single solution branch [BEH11].

This curvature-based selection allows us to compute only the points on the outermost branch of the envelope and not all points...
that comply with Eq. (5) as many envelope algorithms (e.g. [PP00]) do. See Fig. 12 for a comparison between the solutions traced by our algorithm and those traced by [PP00]. Moreover, such an algorithm would need an a posteriori phase where the internal points are filtered out of the solution.

For each time instant of \(r^{-}(\theta) \), the envelope point is updated and the outermost envelope \(e_{0} \) is calculated. Propagating in time, the sought-after segment of the envelope is an ordered sequence of points \(e_{0} = \{ p_{0}, ..., p_{s} \} \). Number \(n \) denotes the number of desired points in the envelope’s tooth profile and it is a parameter of our algorithm. Finally, we also know that the final point of the envelope’s tooth profile \(p_{n} \) must be at an angle of \(-\pi/Z\) with respect to the \(x^{+} \) axis measured from the center \(O_{2} \); see Fig. 13.

Envelope point update. For each time instant \(\phi \) a new envelope point is calculated. The point must solve the envelope condition Eq. (5). We solve Eq. (5) in the convex segment defined by \(r^{-}(\theta, \phi) \). To solve this equation efficiently we use the previous envelope point as the initial guess for a Newton-Raphson method and, since we know that contact between \(r^{-}(\theta, \phi) \) and \(e_{0} \) is continuous, one looks in general for a single root of Eq. (5). For certain time instances, e.g., when the internal profile touches the envelope point of the outermost envelope, the corresponding parameter \(\theta \) is a double root of Eq. (5). In such case, the Newton-Raphson converges only linearly to the root.

Recall that for any moving curve \(r(\theta, \phi) \), any vector normal to the time derivative vector \(\partial r/\partial \phi \) passes through the instantaneous center of rotation \(I \), recall Fig. 10. The calculation of the envelope can be further accelerated by considering the orthogonal complement of the derivative vector \(\partial r/\partial \phi \) (see Eq. (5)), which is the direction vector of the line \(l_{r} \). As one has \(l \) at hand, this fact eliminates the need to evaluate one of the derivatives. With this approach we ensure that the calculated points are on the envelope (up to the numerical precision, double-float in our implementation). At initial time \(\phi = 0 \), the central point of the convex segment \(r^{-}(\theta) \) is used as the initial guess.

Resolution of the calculation. Recall that curve \(r(\theta, \phi) \) moves guided by the hypocycloidal motion of circles \(C_{1} \) and \(C_{2} \) (recall Fig. 6). Therefore the instantaneous center of rotation \(I \) moves over circle \(C_{2} \) as the motion evolves. For the initial time \(\phi_{0} \), \(I \) will lie on the intersection between \(C_{2} \) and the \(x^{-} \) axis; and the final point \(p_{n} \) of the envelope \(e_{0} \) will be calculated when \(I \) forms an angle of \(\pi - \pi/Z \) with respect to the \(x^{-} \) axis (or \(-\pi/Z \) with respect to the \(x^{+} \) axis), see Fig. 13. By setting the number \(n \) of uniform samples as \(I \) sweeps the range \([0, \pi - \pi/Z]\) (from \(x^{-} \) axis) we control the number of points calculated in the tooth profile of \(e_{0} \). The full envelope \(e_{0} \) will have then \(N = 2Zn \) points.

4.1. Results of the envelope algorithm

The proposed algorithm to compute the outermost envelope for the given internal profile was thoroughly tested. A sample of the results for a fixed value \(R_{2} \) and various shape parameters \(e \) and \(S \) is shown in Fig. 14 along with total area of the compression chambers, expressed as a percentage of the area of the internal profile. We set the number of points for a tooth profile as \(n = 300 \). The parameter values, together with the total number of points \(N \) (full envelope) to approximate \(e_{0} \) and the total execution times are shown in Table 1. Observe that in average we need around \(2s \) to compute the outermost envelope for \(n = 300 \). This is a sufficient accuracy as, for the typical size of a gerotor, \(n = 300 \) would translate into a resolution of a hundredth of a millimeter, fine enough resolution for manufacturing purposes and well within the capabilities of most CNC machines [Zha10].

We also studied how our algorithm scales with the desired number of points \(n \) on the envelope’s tooth profile, see Fig. 15. Our experiments show that the execution time scales linearly with \(n \). Moreover, for a fixed \(n \), due to the symmetry, the total number of points \(N \) on \(e_{0} \) scales, as \(Z \) increases, without a noticeable increase in the total computing time, see Table 1. Therefore, by setting \(n \) (and this is usually a manufacturing-driven constraint) one could
calculate envelopes for any number of Z with the same level of detail in the same time.

![Figure 14](image-url) Shapes of the internal profile $r(\theta)$ (red) and outermost envelope e_0 (blue) for different values of the shape parameters. The values of the shape parameters used are reported in Table 1. The framed values show the cavity area as a percentage of the internal gear’s area.

![Figure 15](image-url) Performance of our envelope algorithm depending on the execution time t and the number of points N on the full envelope e_0. Profiles are shown in Figure 14.

5. Gerotor shape optimization

We aim to optimize the set of shape parameters of an existing gerotor pump to maximize the fluid pumped by the gerotor for a unit of time. The problem is well-posed under the constraint of a fixed area/volume of the internal profile, which is proportional to the weight of the pump and also reflects a fixed amount of material needed to manufacture the pump. This requirement heavily constrains the search space but it is a common requirement in engineering scenarios where a more efficient pump is needed to replace a pump that already exists within a system with limited space and weight limits.

We also restrict the pump’s change in diameter to ± 1 mm to ensure that the optimized pump does not change much in total diameter with respect to the original workpiece.

5.1. Area of internal profile

As already mentioned, the gerotor is a 2D mechanism extruded in the direction perpendicular to its plane and therefore the constraint on constant volume is equivalent to the constraint of constant area of the 2D analogue. To approximate the area of the gerotor, one has to discretize it. Even though we have the parametrization of r, and one could consider using the Green’s theorem to compute the area, the formula contains terms that cannot be integrated symbolically and one would have to compute the integral numerically anyway. Therefore, we approximate the area enclosed by r directly using a sum of triangles.

We approximate the area enclosed by the internal profile $r(\theta)$, which is a function of three shape parameters e, S, R_2 used are reported along with the execution time t and the number of points N on the full envelope e_0. Profiles are shown in Figure 14.

<table>
<thead>
<tr>
<th>Fig. 14</th>
<th>Z</th>
<th>S</th>
<th>R_2</th>
<th>e</th>
<th>t (s)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4</td>
<td>3.5</td>
<td>15</td>
<td>1.7</td>
<td>2.8</td>
<td>2396</td>
</tr>
<tr>
<td>b</td>
<td>6</td>
<td>3.9</td>
<td>15</td>
<td>1.6</td>
<td>2.0</td>
<td>3594</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
<td>2.0</td>
<td>15</td>
<td>0.9</td>
<td>1.9</td>
<td>3594</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>3.0</td>
<td>15</td>
<td>0.6</td>
<td>1.8</td>
<td>5990</td>
</tr>
<tr>
<td>e</td>
<td>12</td>
<td>3.0</td>
<td>15</td>
<td>1.0</td>
<td>1.8</td>
<td>7188</td>
</tr>
<tr>
<td>f</td>
<td>15</td>
<td>2.4</td>
<td>15</td>
<td>0.6</td>
<td>1.8</td>
<td>8985</td>
</tr>
</tbody>
</table>

Table 1: Test of the envelope algorithm with different values of shape parameters. The shape parameters used are reported in Table 1. The framed values show the cavity area as a percentage of the internal gear’s area.

To calculate the area we again exploit the fact that the gerotor is rotationally symmetric. The area of the full gerotor corresponds to $(Z - 1)$ times the summation of the areas of all triangles as θ sweeps the range of a single tooth profile. Recall from Fig. 9 and 10 that a tooth profile is defined as the portion of $r(\theta)$ given by two consecutive convex and concave segments. Therefore we sample the range of a single tooth profile by k samples, i.e. $\theta_i = \theta_{i-1} + \delta$, $i = 1, \ldots, k - 1$. Denoting the total area by G, we get

$$G(\delta) = (Z - 1) \sum_{i=1}^{k-1} A_\triangle (\theta_i, \delta).$$

Observe that G depends on the discretization stepsize δ (controlled by k) and also on the initial θ that we set $\theta_1 = 0$. The δ parameter

© 2024 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
governs the accuracy of the approximation. To measure the accuracy of our estimation with respect to the numerical integration via Green’s theorem we calculate the mean absolute error (MAE) for the area calculation of the internal profiles shown in Fig. 14, see Fig. 17. This plot shows the error behavior as a function of the stepsize δ. Based on this function, one can estimate a safe stepsize δ₀ such that our direct approach via discretization of the internal profile returns the same error as numerical integration targeting double-float precision. The threshold that keeps highly-accurate area computation is δ₀ = 10⁻⁶ and therefore we set δ to this value in our algorithm.

![Figure 17: Mean Absolute Error (MAE) calculated for the area estimation of the profiles in Fig. 14. We choose our stepsize as δ₀ = 1 \times 10^{-6} (green).](image)

Note that G also depends on the three shape parameters e, S, and R₂, and the number of teeth of the internal profile Z − 1. Fixing the number of teeth, G = const. can be interpreted as an implicit surface in the (e,S,R₂)-shape space, see Fig. 18. Observe that Eq. (7) can be differentiated with respect to the shape parameters e, S and R₂ to obtain a gradient vector ∇G. In the optimization of non-analytic objective functions, at every time-step the gradient of the objective function F is estimated by searching using finite-differences to look for the cheapest direction. Since deviation from the constraint manifold will be penalized in the objective function, by using the constraint gradient one can rapidly discard search directions that deviate from the constraint manifold without the need to evaluate the objective function F, thus accelerating the convergence towards the optimizer. This is another reason why we compute the area via direct discretization of the curve, rather than the Green’s theorem and numerical integration.

5.2. Physical feasibility

To define a physically feasible interior gerotor profile r(θ), the tangent vectors at every point must be uniquely defined, i.e. there must not be singular points, as singular points represent features such as cusps or self-intersections, which makes the profile unfeasible for practical applications, see Fig. 19. The feasibility of r(θ) can be assured by adequate relationships between the shape parameters

\[r_2 (\lambda - 1)^3 (\tau - 1) \leq S \leq \frac{3\sqrt{3}}{2 \tau - 1} \left[r_2^2 - r_2 (\tau - 1) \right]^{1/2} \]

(8)

where \(\lambda = R_2 / r_2 \) and \(\tau = Z / (Z - 1) \). For more details about derivation of Eq. (8) see [LF96, Section 5]. Since circle radius \(r_2 \) can be calculated from e and Z (recall the profile construction in Section 3.1), the feasibility condition depends only on the shape parameters e, S, R₂ and the desired number of teeth Z.

![Figure 18: Implicit surfaces generated by the fixed area constraint \(G(e,S,R_2) = \text{const.} \) for different values of the number of teeth. For all cases we use a fixed area of \(\text{const.} = 390 \text{ mm}^2 \) and ranges of interest for the shape parameters: \((e,S,R_2) \in [0,5] \times [0,5] \times [11,15] \).](image)

![Figure 19: The violation of the feasibility condition (Eq. (8)) results in profiles that contain cusps and self-intersections, and are not suitable for practical applications. The boxed values show the triplets (e,S,R₂).](image)

Given a fixed Z, the constraint in Eq. (8) defines a subset of the shape parameter space. We call this subset the feasible space and denote it by Ω_f, see Fig. 20. Ω_f is delimited by the boundary surface defined in Eq. (8) (when the equality holds) and contains all triplets (e,S,R₂) that generate valid profiles.

5.3. Shape optimization

As the gerotor’s flowrate is proportional to the total size of the compression chambers [LKS18], to find the most efficient gerotor, we optimize the profile design parameters to maximize the sum of areas of all chambers. This area is the difference between the areas enclosed by the external and the internal profile (recall Eq. (7)). The search for the optimal gerotor mechanism is formulated as an
optimization problem:

$$\max_{e,S,R_2} F(e,S,R_2) = A_{ext}(e,S,R_2) - G(e,S,R_2)$$ \hspace{1cm} (9)$$

subject to two constraints:

$$G(e,S,R_2) - \text{const.} = 0 \quad \text{and} \quad \text{Eq. (8)}.$$ \hspace{1cm} (10)$$

where the first constraint is the condition of a fixed area of the internal profile and the second constraint is the physical feasibility, discussed in Section 5.2. The objective function F expresses the cavity area of the gerotor (i.e. available area to be filled with fluid).

Remark 1 The external part of a gerotor pump is built using not only the external envelope, but also an external circle, recall Fig. 3, of a given radius R_{ext}. This circle defines the size of the overall set and one should consider it when calculating the weight. The material area of the whole gerotor is then $\pi R_{ext}^2 - F$. However, even though the value of R_{ext} is proportional to the areas of the internal and external profiles, it is primarily defined by engineering constraints (e.g. interface of the gearset with the machine assembly). As it is not possible to consider these constraints in our optimization pipeline, we define our constant weight (\equiv material) constraint as the area of the internal profile constant ($G = \text{const.}$). An exploration of the constraint manifold is shown in Fig 22.

To solve the optimization problem we opted for an interior point algorithm [WMNO06]. In this implementation the implicit surface constraint, which is characterized as a nonlinear equality constraint, is managed through a logarithmic barrier function and its gradient function used to speed up convergence, see [CGT97]. The feasibility nonlinear inequality constraints are managed using penalty multipliers [Deb00]. When one wants to optimize an existing piece, the (e,S,R_2) triplet of the original gerotor can be set as the initial point x_0 for the interior point algorithm. When no original piece exists, we opt for an Augmented Lagrangian Genetic Algorithm [CGT97] to produce an initial guess x_0 in the constraint manifold and then we refine the best solution obtained by the genetic algorithm using the same interior point algorithm.

6. Results and benchmark comparison

To test our methodology we optimize an existing workpiece. We aim to maximize the fluid’s area of the pump for the same number of teeth $Z = 9$ and keep the internal area of the workpiece constant and the radius R_2 in the range $[13,14]$ mm. The profiles of the original workpiece and the optimized profiles, along with their corresponding shape parameters, are shown in Figure 23. The optimized piece maintains the same area for the internal gear as in the original piece but produces larger compression chambers. This increased volume capacity translates into a higher flowrate of the optimized piece while keeping the same gear area, and therefore the material needed for its fabrication.

To validate our optimization, we calculate explicitly (with 5000 samples) the constrained search manifold G_f for the original workpiece and evaluate in extenso the objective function F (cavity area) over the whole manifold. Fig. 24 shows three points on G_f that...
represent to the original workpiece, the optimized gerotor and the shape that corresponds the mean value of F throughout G_f. We also show the location of the maximum-valued P_{max} gerotor computed using the sampled manifold. The maximum value of F estimated using our optimization pipeline $F(P_{opt}) = 92.47$ mm2 differs from that of the maximum in the sampled manifold $F(P_{max}) = 92.36$ mm2 by 0.11%. Notice that the total execution time to evaluate in extenso the sampled constraint manifold takes over two hours (7810 seconds) while our optimization pipeline runs in under two minutes.

We also estimate the instantaneous flowrate (amount of fluid per unit time) of each pump to demonstrate that our optimized profile is better than the original workpiece, see Fig. 25. We do this by a numerical method (see Rundo [Run17, Section 4.2]) that calculates the area of the compression chambers for each time instant the pump. We perform all estimations for a pump speed of 10000 rpm and we show that the optimized profile increases the mean estimated flowrate q_{avg} of the existing workpiece from 7.44 lpm (liters per minute) to 8.62 lpm, an increase of 15.88%. Comparing the optimized profile to the pump corresponding to the mean-value of F, the increase in the mean flowrate is of 70.25%.

Fig. 26 shows the evolution of the area for a single compression chamber in time in the case of the original profile and the optimized profile. The increase in the flowrate corresponds to the increase of available fluid amount in each chamber and one can see that the optimized chamber absorbs, at every time instant, more fluid than the original one.

We use our optimization pipeline to study the effect of the number of teeth Z on the gerotor’s cavity area. We find the optimum P_{opt} profile for $Z = \{7, 8, 9, 10\}$ for the same internal area as our original workpiece (377.59 mm2). In Fig. 27 we show the optimum profiles, their location on the constraint manifold, and the in extenso evaluation of the manifolds sampled with 5000 points. Observe that the maximum cavity area diminishes as Z increases. We also note that, for all values of Z, the cavity area increases as the eccentricity e increases. This is in accordance with the engineering practice, and also the experience of our industrial partner (Anonymous), that increasing the eccentricity increases the flowrate.

6.1. Implementation details

The whole algorithm was implemented in MATLAB and the MATLAB’s integrated optimization toolbox was used to solve the optimization problem posed. All tests were conducted in a computer with 16 GB RAM and 11th Gen Intel Core i5-11400 (2.6GHz) processor. The execution times for the envelope algorithm were reported in Table 1 and Fig. 15. The execution times for the entire optimization pipeline in the case of the examples presented in Fig. 27 are reported in Table 2.
Optimizing the number of teeth. Even though we did not optimize the number of teeth, it would be possible to consider that parameter also as an optimization variable and use mixed-integer programming to look also for the optimal number of teeth. However, it is in accordance with the engineering practice that the number of teeth is fixed and only the shape of the gerotor is being optimized. The reason for this is that the selection of the number of teeth obeys to factors related to the specific operation of the pump (e.g., operation speed). This variable, however, does affect the wear and contact stress of the workpiece [KRFM12] and common engineering practice dictates that a minimum of $Z = 7$ should be used to ensure correct gearing [JDM16]. Additionally to the gearing factor, pumps with less $Z = 7$ teeth are discouraged in practice due to the flowrate ripple effects, vibrations, and louder noise. See [GMCC19] for a review of articles that elaborate on this matter.

Alternative optimization methods. We used interior point and augmented Lagrangian genetic algorithm as our optimization method as it is well suited for optimization with several constraints and has good convergence properties. Alternatively, one could experiment with other genetic algorithms or other evolutionary methods well-suited for non-analytic objective functions [Vos99].

Other optimization objectives. We approached the problem purely geometrically, looking for the best shape that maximizes the area of compression chambers, postulating that their size is proportional to the whole flowrate. In our case we were approached by an industrial partner with a task to optimize for maximum flowrate, but for certain applications one may aim at other objectives, e.g., flowrate steadiness in medical dosing applications, noise reduction, etc. With a modification of the objective function, our framework can be easily adapted towards that goal.

Computational efficiency. The computational time takes a few minutes to compute the whole algorithm on a standard laptop. Some parts of the algorithm, e.g., the execution of the interior point algorithm could eventually get speeded up via parallelization, however, in the whole gerotor fabrication cycle, this computation time negligible.

7. Conclusions

A computational framework to design and optimize gerotor pumps has been presented. The proposed approach constructs a configuration space of all physically feasible gerotors. Considering three major design parameters, the search space is a part of \mathbb{R}^3, where the desired gerotor is sought for. The search for the most efficient gerotor is formulated as a constrained optimization problem and an interior-point algorithm is used to find the maximizer. The results show that the proposed framework finds the optimal solution. The proposed algorithm has been tested on a benchmark geometry, showing that the flowrate can be increased up to 16% compared to an existing gerotor.

Acknowledgements

We thank Egile Innovative Solutions for the industrial input for this project. This work was partially funded by the Basque Government/Eusko Jaiotza Grant Numbers ZL-2020/0019 and IDI-2022/0057, the Basque Government BERC 2022-2025 program, and by BCAM “Severo Ochoa” accreditation CEX2021-001142-S. M. Bartoň was supported by RYC-2017-22649 funded by MI-CIU/AEI/10.13039/501100011033 and EI ESF "ESF Investing in your future".

References

Figure 27: Effect of the number of teeth $Z = \{7, 8, 9, 10\}$ on the optimum profile P_{opt}. The maximum cavity area diminishes as Z increases and the optimum is always located on the $e = \text{max}$ border of the constrained manifold G_f.

(a) Original
(b) Optimized
(c) Optimized gearset

Figure 28: Plastic 3D printed prototypes of the original and optimized workpieces. We verify the kinematic behaviour of both gearsets to ensure movement smoothness. In the second row we show snapshots of the optimized set movement (see also the attached video).

J.C. Pareja-Corcho et al. / On shape design and optimization of gerotor pumps

Journal of Precision Engineering and Manufacturing 19 (2018), 1385–1392. 8

