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Hierarchical additive poisson disk sampling

Alexander Dieckmann and Reinhard Klein†

University of Bonn

Figure 1: Additive hierarchical poisson disk sampling of the top view of a tomato plant scan. Top left: Original point set with scan-artifacts.
To right: Increasing resolution of poisson disk samplings with octree depth D = 0 to D = 3. The scan-line and scan-edge artifacts vanish in
the lower resolution poisson disk samplings. Bottom: Respective power spectrums of the samplings.

Abstract
Generating samples of point clouds and meshes with blue noise characteristics is desirable for many applications in rendering
and geometry processing. Working with laser-scanned or lidar point clouds, we usually find region with artifacts called scan-
lines and scan-edges. These regions are problematic for geometry processing applications, since it is not clear how many points
should be selected to define a proper neighborhood. We present a method to construct a hierarchical additive poisson disk
sampling from densely sampled point sets, which yield better point neighborhoods. It can be easily implemented using an octree
data structure where each octree node contains a grid, called Modifiable Nested Octree [Sch14]. The generation of the sampling
amounts to distributing the points over a hierarchy (octree) of resolution levels (grids) in a greedy manner. Propagating the
distance constraint r through the hierarchy while drawing samples from the point set leads to a hierarchy of well distributed,
random samplings. This ensures that in a disk with radius r, around a point, no other point upwards in the hierarchy is found.
The sampling is additive in the sense that the union of points sets up to a certain hierarchy depth D is a poisson disk sampling.
This makes it easy to select a resolution where the scan-artifacts have a lower impact on the processing result. The generated
sampling can be made sensitive to surface features by a simple preprocessing step, yielding high quality low resolution poisson
samplings of point clouds.
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1. Introduction

Sampling methods are an essential part of computer graphics. For
example, laser scanned point sets are the result of a sampling pro-
cess of a surface. The laser scanner shoots rays into uniformly sam-
pled scan directions and measuring the distance of a point into that
direction. The produced point clouds have inhomogeneous local
point distributions, due to the irregular sampling rate of the scanned
surface. When multiple scans are combined to produce a more com-
plete representation of the scanned surface, the inhomogeneity is
increased and the point cloud will contain over- and under-sampled
regions, visible as scan-lines and scan-edges, see Figure 1 and 2.
Applications which process point sets locally are sensitive to the
point distribution. An example is the normal estimation based on k-
nearest-neighbors which gets instable in case that all neighbors be-
long to the same scan-line, see Figure 3. Similar problems occur in
other contexts like surface reconstruction [KH13], object/mosaic-
tile placement, point splatting [BHZK05], etc.

One way to overcome this problem is to subsample the point set
and to adjust the distribution in such a way that local point neigh-
borhoods better represent the local surface. Unfortunately, the cho-
sen subsampling heavily influences the resulting neighborhoods.
For example, a grid-based random sampling, used in many out-of-
core rendering contexts [Sch14], [WS06], where each grid cell con-
tains at most one point, results in samplings where some neighbor-
ing points can be arbitrarily close. This introduces artificial noise
into the the sampling and leads to neighborhoods which don’t rep-
resent the local surface well. Choosing the closest point to the cell’s
center or the center it self as a representative yields higher quality
neighborhoods but introduces bias into the sampling, see Figure 5.
While the first approach introduces noise, this approach leads to
structural aliasing, see Figure 8.

Figure 2: Top view of a part of a tomato plant laser scan. Left:
Scan-lines are the horizontal and vertical lines. Scan-edges come
from overlaying different scans, visible in the left dark region .
Right: Poisson disk sampling of the left scan. The distances be-
tween the points are more uniform (the close points are due to the
2D view of the 3D Scan).

In contrast, better random but more uniform point sets can be
generated by blue noise sampling which produces poisson disk
point sets. These point sets are, due to their statistical characteris-
tics, ideal candidates in various geometry processing and rendering
applications. Points of a poisson disk point set are randomly dis-
tributed with a minimum distance r constraint between the points.

These point sets exhibit two spectral characteristics which can be
used to identify random and well-spaced samplings. First, the en-
ergy is equally distributed without spikes. Second, the spectrum has
a deficiency of low-frequency energy. These conditions are called
blue-noise criteria [Mit87], [Uli88]. The PSA tool [SD11] can be
used to analyze these 2D point distributions by their 2D spectrum.
Additionally two 1D statistics of the sampling are computed. The
first is the radial distance function, which is a measure of the prob-
ability to find a particle at distance r. The second is the radially
averaged power spectrum which shows the direction independent
energy distribution of the spectrum, see Figure 5 and 4. While

Figure 3: Left: Degenerated neighborhoods in scan-line-areas the
lead to arbitrary normal directions (red lines). In addition orient-
ing normals using [HDD∗92] cannot guarantee correct oriented
normals. Right: Smooth normals (red lines), computed on a lower
resolution and shown on the full point set.

blue noise sampling drastically improves the computation of local
surface features there still remains the question how to choose the
minimal point distance r. While r must be chosen such that the lo-
cal neighborhoods do not degenerate, e.g. due to a single scan-line,
choosing r too large might lead to over-smoothing. In high density
areas r should be smaller, in low density areas respectfully larger.
Adapting r in different regions of the point set can be done with
Yuksel’s [Yuk15] progressive sample elimination, which generates
a poisson disk point set with a user-specified number of points and
very good blue noise characteristics. Due to the progressive nature
of this approach, points can be added to the sampling to increase
the resolution and decrease r. Unfortunately, this can be done only
globally, i.e. if higher resolution is necessary in some areas, all
points have to be inserted into the point set.

Using a hierarchy of scales enables easy switching between dif-
ferent levels to adapt the resolution. In this paper we therefore
describe a sampling method, to produce poisson multi-resolution
samplings of large point sets, which are additive in the poisson disk
sampling sense. The union of points in different resolution levels
is guaranteed to have empty neighborhoods up to the radius corre-
sponding to the finest resolution level of the union. This way the
minimum sampling distance r is achieved by simply choosing lo-
cally the appropriate level of detail. These samplings can be used
to decrease the influence of data related artifacts in point sets, i.e.
scanned point sets, on the results of various geometry processing
methods as well as on the rendering quality of these point sets. Fur-
thermore, we describe a greedy approach which makes the multi-
resolution sampling feature-sensitive, such that feature points are
always contained in coarse resolutions. While being reasonably
fast, see Table 1, our method cannot guarantee maximal coverage.
We focus on the efficient processing of large point clouds stemming
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from unprocessed laser scanned surfaces and show some additional
results for triangle meshes.

2. Related Work

Generating a sampled point set with blue noise characteristics has
many applications in rendering [Coo86], [CGW∗13], [SZG∗13],
texturing [LD05a], stippling [BSD09], [DGBOD12], [Fat11], an-
imation [SB12], visualization [LWSF10] and numerical optimiza-
tion [EPM∗14], [MEA∗18] and geometry processing [ACSD∗03],
[ÖAG10], [CGW∗13], [GYJZ15], [YGW∗15], [AGY∗17],
[NBH18].

2.1. Poisson sampling

A simple way of generating poisson disk sample sets in arbi-
trary dimensions is dart throwing [DW85], [Coo86]. Given the de-
sired poisson disk radius r, dart throwing rejects or accepts ran-
domly generated points based on its distance to previously accepted
points. Due to difficulties in generating very large, well distributed
point sets, a data structure that partition the sampling domain into
grid cells is introduced in [Bri07], which achieves linear time and
can be extended to parallel sample generation [Wei08].

Tile based methods are used to efficiently generate a large num-
ber of poisson disk samples in 2D by reusing another poisson disk
sampling method [HDK01], [CSHD03], [LD05b], [KCODL06],
[KS12], [WPC∗14]. The tiling of small generated samplings pro-
duces very large samplings but is restricted to the 2D sampling do-
main.

2.2. Progressive sampling

Progressive sampling methods reduce the poisson disk radius r
progressively [MF92], [MREB12], but they are prone to intro-
ducing sampling bias and their quality and performance depend
on how r is updated. Other progressive approaches require mesh
surfaces [YW13] or are restricted to the 2D domain. A differ-
ent approach of generating a progressive poisson disk sampling
in higher dimensions, called sample elimination, is described by
Yuksel [Yuk15]. This method produces a progressive poisson disk
sampling with a user-specified number of points N from a given
set of M samples. Finding such a subset with the largest poisson
disk radius is an NP-complete problem, but an approximate solu-
tion can be found using a greedy algorithm in M−N steps. Each
sample is assigned a weight based on its distance to its neighbors.
At each step, the sample with the highest weight is eliminated and
the weights of the remaining points are adjusted. The inverse elim-
ination order gives a hierarchical representation of the point set.
While sample elimination produces point sets with excellent blue
noise characteristics, we found it was not possible to adapt the ra-
dius r locally and to use this method in the context of out-of-core
capable data structures on point clouds with 10-63 million points
in a reasonable amount of time.

A progressive solution to generate an approximate poisson sam-
pling was proposed in the context of efficient point cloud rendering
[Sch16](Potree). This approach built on a data structure introduced
by Scheiblauer [Sch14], called "Modifiable Nested Octree". This

data structure consists of an octree storing a uniform grid in each
node and can be used efficiently for dynamic frustum culling of
large parts of the surface, while keeping a certain resolution level
with respect to the viewer. The octree is filled with points from a
scan in a greedy fashion. Each grid cell is allowed to contain only
one point. Starting at the root node of the octree, the node’s grid oc-
cupancy is queried. If a grid cell already contains a point, then all
points falling into the same cell are rejected to the children of the
octree node. Choosing a random point from the point set for each
grid cell leads to a hierarchy of samplings where neighboring points
and points in consecutive octree levels can be arbitrary close. Incor-
porating a distance constraint, to generate an approximate poisson
sampling per grid, still produces a hierarchy of samplings in which
points in neighboring grids and in consecutive octree levels can be
arbitrarily close. While this improves the rendering quality of the
scans, further processing of the scanned geometry is still biased to
the used data structure. In our approach we overcome this drawback
and generate unbiased hierarchical additive poisson disk samplings
using a similar data structure.

RDF Power Spectrum

Averaged over 10 sets
Gbl. Mindist   0.12012
Avg. Mindist   0.78380
Eff. Nyquist   0.49514
Oscillations   1.27475
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Figure 4: A hierarchical sampling of the 2D plane. The resolution
increases from left to right. Top row: The respective periodograms
on the right side of each sampling show the blue noise characteris-
tics of the samplings though the hierarchy. The sampling is additive
in the sense that the points from the left sampling are included in
the right one. Bottom row: The radial distribution function (left)
and the power spectum (right). The images are generated with the
PSA tool [SD11].

3. Method Overview

Based on a simple C++/OpenGL rendering framework we imple-
mented a sparse octree data structure and a sparse grid data struc-
ture using generic hash data structures. While an octree can be used
to represent a grid, making this distinction makes implementation
and maintenance much easier than, for example, an octree of oc-
trees. The grids store indices into the original point set, while the
octree is used to traverse the hierarchy of grids. The general idea
of our method is to use the extended dart-throwing method [Bri07]
by drawing points from the point scan and propagate the distance
constraints through the hierarchy by traversing the octree.

Starting at the root node, the octree is build up layer by layer,
where a layer contains all active octree nodes of the same depth.
For each point in a scan we maintain a pair of its point set index
and a pointer to the node in which the point should be inserted.
Initially the node pointers are set to the root node. These pairs are
stored in a list, which we will call the active point list. For each
point in the list, we try to insert its point set index into the octree
node, see Figure 6. We query the grid inside the node and decide
if we accept or reject that point by making a neighborhood query
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RDF Power Spectrum
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Figure 5: The frequency analysis for comparison of grid random sampling, grid closest to center sampling and poisson sampling of the 2D
plane. The colors in the frequency plot for the grid closest to center sampling are inverted for better visibility. The results are generated with
PSA tool [SD11].

to all nodes from the root node to the current node with the current
poisson radius rD suitable for the current resolution D.

When the point is accepted it is deleted from the active point
list and only considered for the rejection of following points. If the
point is rejected we push the point further down to the respective
child node and update the node pointer in the pair, yielding the next
active point list. We iterate this procedure until the next active point
list is empty or stop at a depth of 21 and reject all points from this
depth on due to the small resolution at this level. The former active
point list is freed from memory when it has been fully processed.

Unifying the samples in octree nodes of all nodes from the root
node to the current depth yields a poisson sampling of the point set.
Adding another layer, doubles the resolution of our poisson disk
sampling. The sampling is additive in the sense, that the union of
samplings is a poisson sampling, Figure 4.
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Figure 6: A grid cell is occupied (hatched) by point p and rejects
a point q if it falls into the same cell or their distance d is smaller
than the poisson disk radius rD. Starting in hierarchy depth D = 0.
The point q is pushed to the child in the next hierarchy level and
will be rejected again, d < r1, until a free cell is reached and no
conflict can be found in its neighborhood d > r2.

4. Data structure

4.1. Grid Neighborhood Queries

We use a 3-dimensional grid to store the sample indices and the
occupancy in each octree node. A grid is defined by an axis
aligned bounding box which is then regularly subdivided into

width · height · depth cells. We take the cubed bounding box with
width = height = depth, to exploit the axis-symmetry with respect
to the center of the box, which we need for fast conflict check-
ing. For a conflict check with radius r and query point q we first
compute the morton index [Bae18] of the cell containing the query
point q. If this cell is free, we test all adjacent cells for conflicts.
If any point inside the query ball is found, we reject the point and
suspend further grid cell tests.

4.2. Octree Neighborhood Queries

The octree stores nodes, which we identify by their 64-bit loca-
tion code. The location code of a node’s children are computed
by shifting the node’s location code three bits to the left, followed
by a bit-wise OR operation with the octant number of the child.
For example, the root node has a binary location code 1. After the
shift operation its binary representation is 1000. For the child oc-
tant number 2, in binary 0010, we get it’s location code in binary
as

1� 3 | 0010 = 1000 | 0010 = 1010

, which is in decimal 10. The location code of a node’s parent can
be computed by shifting its location code three bits to the right i.e.
for the location code of child octant 2 of the root node:

1010� 3 = 1

With this indexing based on the location codes we can pull the hi-
erarchy information out of the octree nodes and we don’t have to
store pointers inside the nodes. Each octree node stores only its lo-
cation code, a grid with point indices and an existence flag for each
child node. We can easily traverse the octree in Breadth-First-Order
and stop on different resolution levels. This will be useful for pro-
cessing a scan and computing various quantities from local point
neighborhoods.

4.3. Accelerated search

Each point in the active point list is associated to a node in the
octree which we have to check next. Instead of walking downwards
from the root node, we can accelerate the search by considering the
last layer of the octree nodes, which changed in the last run, first.
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Figure 7: Increasing the resolution from left to right. The resolution levels contain 4.282, 16.499, 59.509, 219.393 points. The scan contains
6.364.517 points in total. Total time: 25.5 seconds.

For checking conflicts of octree nodes with the query ball we use
the inside and overlap test presented in Behley et al. [BSC15]:

If a the query ball is located completely inside the current oc-
tree node, it will also be located completely inside the parent node.
We can thus query the current node and then proceed with its par-
ent, if it exists. The inside test checks for a point q with query ball
B(q,r) of radius r and a node with center c and extent e, if any
of its transformed coordinates are outside of the node. The query
point q is transformed to the local coordinate system of the node
q′ = |q− c|, where | · | denotes the component wise absolute value.
The transformed query ball B(q′,r) is inside the node if

q′( j)+ r < e

is true ∀ j.

Otherwise, the transformed query ball can overlap neighboring
octree nodes. The transformed query ball B(q′,r) overlaps with the
a node if the maximum coordinate q′( j) of its midpoint q′ fulfills

max
j

q′( j) < e+ r

and at least one of the following two conditions

min
j

q′( j) < e or ‖q′−1 · e‖< r

where 1 is the vector (1, . . . ,1)T containing only ones. We first de-
scend from the node’s parent. If still no conflict is found, we just
descend from the root node. If the query ball and a node do not
overlap, the node can be disregarded for the current conflict check.

5. Poisson disk sampling Implementation

Each sparse grid has an std::unordered_map to store point set in-
dices and a std::bitset for fast occupancy queries. We use these data
structures as a compromise between fast queries and memory effi-
ciency. Each grid-cell is indexed by morton index [Bae18]. We
subdivide the cubed (width = height = depth) axis aligned bound-
ing box with extent eD in hierarchy level D into width3 cells, yield-
ing a cell extent of ec = eD/width, from which the poisson radius
rD in is computed as

rD =
ec

2
·
√

3

Each grid-cell is empty at first. For all points inside the active

point list, we start at the first point and then proceed to the next.
Given a point we want to insert, we compute its morton index
[Bae18] and make an occupancy test in the std::bitset. If the cell
is not occupied by another point, we query the cell’s direct neigh-
borhood. We then test whether the points inside the cell’s neighbor-
hood are outside the query ball.

When all tests pass, the point is accepted. We store the point’s
point set index in the std::unordered_map using its morton index
and mark the cell occupied in the std::bitset. When one test fails,
the point is rejected to the respective child node, which is inserted
to the next active point list, see Figure 6. We repeat the insertion
process after the current active point list is fully processed. We stop
if the next active point list is empty. Using 64 bits to represent the
location code of an octree node, the octree can reach a maximum
depth of 21. Assuming a side length of 1 meter for an object, sub-
dividing 21 times yield lengths in the 100 nanometer range. At this
scale any point is as good as another, so we ether reject or replace
all samples afterwards.

The octree has an std::unordered_map to store the octree nodes
by their location code and a pointer to a point set container used to
store points. We use this data structure to avoid the construction of a
full linear octree and store only active octree nodes in memory. We
use Breadth-First-Order traversal to collect all points up to octree
depth D to get a low resolution subsampling of the whole point
cloud.

6. Results

6.1. Estimation of Normals

We compare three different sampling strategies, random, closest-
to-center and poisson disk sampling. On low resolution levels the
random and closest-to-center sampling yield a point set where lo-
cal surface details are not as visible as in the poisson disk sampling,
see Figure 8. The distance constraint in Poisson disk sampling en-
sures that local point neighborhoods represent the local surface bet-
ter than the other approaches. The random sampling introduces
noise into the sampling, by considering any point in a grid cell.
The local neighborhoods thus only approximate a noisy surface.
The medioid sampling is biased to the data structure, since it se-
lects the point closest to the grid-cell center and thus cannot select
the points responsible for the high frequencies in the normals. The
poisson disk sampling selects points, such that local neighborhoods
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Figure 8: Top row: Closeup showing the area with the surface details. All samplings of the vase have close to 30.000 points.
Bottom row: Samplings of the chinese coin [Art18] contain close to 100.000 points in the same sampling order.
Left: Random sampling, surface details are not visible. Middle: Closest-to-center, details are not surface visible, Right: Poisson disk
sampling, surface details are visible.

represent the local surface much better. For visualization of the nor-
mals we plot the Least squares normals as rgb values. We used the
splatting scheme from [SW15] to visualize the point clouds as ap-
proximately closed surfaces. Using our data structure we can easily
switch between resolutions by traversing the octree up- and down-
wards. Figure 7 shows this resolution traversal on a point cloud of a
Laser-scanned tomato plant of approximately 6 million points. For
the meshes shown in Figure 8, Figure 9 and Figure 11, we subsam-
ple the triangles to generate a point cloud of 300.000 points, which
are then inserted into the data structure to generate the hierarchy.

6.2. Feature sensitive additive poisson disk sampling

When points are inserted into our data structure, the lower resolu-
tion levels are filled first. The points can thus be reordered before
the insertion by some precomputed point quantity. We precompute
a curvature like measure from the eigenvalues of a local princi-
pal component analysis (pca). Given a point we query the octree
for all points in a radius r. Then we compute the sorted eigenval-
ues from the local covariance matrices by computing a pca on the
points in the r−neighborhood. From these eigenvalues λi we can
derive point quantities like sphericity

sp =
λmin

λmax
∈ {0 . . .1}

or surface variation

sv =
λmin

∑i λi
∈ {0 . . .1}.

N Total time Total time Samples per second
[Yuk15] our our

100K 1.4s 0.23s 434K
1M 14.9s 2.99s 334K

10M 168s 43s 232K
20M 347s 92s 217K
30M 523s 144s 208K
40M 699s 200s 200K
50M 878s 255s 196K
60M - 339s 176K

Table 1: Timings using a single thread on an Intel Core i7-5820K
@ 3.30Ghz. The first column shows the point set size. The second
shows, the total time for N samples progressive sample elimination.
The third shows, the total insertion time for N samples of our ap-
proach. The last column shows the number of samples per second
of our approach.

For example, sphericity sp is low if the shape of the neighborhood
is flat or line-like and high if the neighborhood is sphere-like. Sort-
ing the points by this quantity in descending order will force the
lower resolution grids of the octree to accept sphere-like points first
and others only later. This can be seen in the Figures 9 and 11
for the sphericity scalar field. Comparing the dragon in Figure 10
and Figure 11, we can see that the feature aware sampling contains
points on the dragon scales, claws, tooths and horns while the pois-
son sampling in Figure 10 does only contain some of these samples.
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Figure 9: Results on the Smart Car mesh [Art18]. Increasing the resolution from left to right. The color values go from red/high to black/low.
We can see how the low resolutions contain the desired points.

6.3. Computation Time and theoretical Complexity

Table 1 shows the computation time on synthetic data sets. We ran-
domly generated N samples on triangle-meshes and then inserted
the points into our data structure. The first column shows the num-
ber of points inserted into the hierarchy. The second show the pro-
gressive sample elimination [Yuk15] time in seconds, the third col-
umn show the total insertion time into our hierarchy in seconds,
while the last column shows the average number of samples pro-
cessed per second. These results confirm our expected theoretical
complexity of T (N) ∈ O(N log2(N)) which comes from building
the octree and descending the respective depth for each point. It
can be calculated as follows:

We have denote by N the total number of points, k j are the points
inserted into layer j and D is the worst case lookup for a conflict.
The doubling of the resolution from one layer to the next leads to
quadrupling the number of points k j = k0 · 4 j. We denote the total
generation time of the hierarchy by T (N), which gives:

T (N) = N +
D

∑
i=1

(N−
i−1

∑
j=0

k j)D

= N +
D

∑
i=1

(N− k0

i−1

∑
j=0

4 j)D

= N +
D

∑
i=1

(N− k0
3
(4i−1))D

= N +ND2− k0
3

D2− k0
3

D
D

∑
i=1

4i

= N +ND2− k0
3

D2− k0
3

D
D−1

∑
i=0

4i+1

= N +ND2− k0
3

D2− 4k0
9

D(4D−1)

= N +ND2− k0
3

D2 +
4k0
9

D− 4k0
9

D4D

Since we have D = log8(N) we get 4k0
9 log8(N)4log8(N) =

4k0
9 log8(N)4

2
3 log4(N) = 4k0

9 log8(N)N
2
3 . The second term domi-

nates which gives T (N) ∈ O(N log2 N).

7. Conclusions

We introduced a fast hierarchical poisson disk sampling method to
eliminate scan artifacts from laser and lidar scanned point clouds. A
simple reordering of the points according to some weights, makes
the sampling feature aware to better represent surface features at
low resolution levels. We also showed on two examples that using
a poisson disk sampling, for the computation of normals, shows
finer details than a simple random grid or structured grid sampling.
Building on a data structure used in several prominent out-of-core
rendering pipelines makes our approach directly applicable to these
applications.
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Figure 10: Additive hierarchical poisson disk sampling of the Dragon model. The points in the lower resolution levels are not restricted to
features. Increasing the resolution from left to right

Figure 11: Results on the Stanford meshes. Increasing the resolution from left to right. The color values go from red/high to black/low. We
can see that the low resolution levels include the points of high sphericity.
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