
Vision, Modeling, and Visualization (2017)
M. Hullin, R. Klein, T. Schultz, A. Yao (Eds.)

Pixel Cache Light Tracing

J. Jendersie K. Rohmer F. Brüll T. Grosch

Institut für Informatik, TU Clausthal, Germany

Figure 1: Equal time comparison (1min) of different sampling strategies. F.l.t.r.: Path Tracing (PT), Light Tracing (LT), Bidirectional Path
Tracing (BPT), Stochastic Progressive Photon Mapping (SPPM) and Pixel Cache Light Tracing (PCLT). PT fails to produce caustics, LT
has the same problem with projection to the camera and BPT has still no option for Specular-Diffuse-Specular paths. Only SPPM shows all
paths. PCLT produces sharper images than SPPM but misses some multi-specular reflections (blueish spot at the bottom of the cube).

Abstract
In this paper, we introduce Pixel Cache Light Tracing, which is a new low-noise combination of eye-path and light-path tracing.
In the first pass, eye-path vertices are distributed from the observer and stored in a hit point map analogous to progressive
photon mapping. In the second pass, photons are traced from the light source and projected to the image as well as gathered by
the hit point map.
We combine the paths from both sampling strategies in a deterministic way without multiple importance sampling, such that the
final result is consistent and free from firefly artifacts. In many practical cases, this combination leads to sharper caustics and
reduced noise when compared to alternative techniques at equal time.
Further, the simplicity of the path combination strategy is predestined for GPU-based implementations and requires less memory
than a comparable photon mapping implementation. In addition, we provide a fast, parallel and lean hash map implementation
for both photon and hit point queries.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Light transport simulation is often done using Monte Carlo-based
integration strategies. These methods are able to produce unbiased,
physically plausible solutions of the rendering equation, but suffer
from high-frequency noise. In contrast, photon mapping [Jen96]
introduces a systematic error (bias), due to blurring light, which on
the other hand decreases the noise. Photon mapping can be adjusted
to produce consistent results in theory [HOJ08,KZ11] which means
that the systematic error decreases over time. In practice, the initial
bias often remains for an impractical long time.

PCLT combines SPPM and light tracing in a simple form, sacri-
ficing some benefits from Multiple Importance Sampling (MIS).

The emphasis is on unidirectional light tracing where possible,
since it yields desirable results in many applications. The simplicity
of the design allows fast GPU implementations compared to MIS-
based techniques. It requires less complex, time consuming oper-
ations because of the few path crossover points and no rejection-
based estimates like [QSH∗15].

In the first pass we store eye-path vertices (hit points), having at
least one glossy bounce, into a search data structure. While tracing
a light path we search for close hit points in the map and estimate
the radiance contribution for a pixel directly, without storing pho-
tons. The idea of storing hit points instead of photons is not new and
was used before by [HHS05], PPM [HOJ08] and SPPM [HJ09]. It
does not change the behavior opposed to a classic photon mapper

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/vmv.20171269

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20171269

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

but requires less memory if the number of pixels (with glossy re-
flections) is smaller than the number of photons. For all other paths,
including direct light, we prefer general unbiased light tracing with
projection. This reduces the visible bias significantly and still pro-
duces results without fireflies.

Additionally, we introduce a lean and fast hash grid for hit points
or photons which is useful for many mapping-based approaches.

2. Related Work

Path and Light Tracing are the two elementary path creation
strategies. Path tracing was introduced in combination with the ren-
dering equation in [Kaj86]. Paths are traced beginning at the ob-
server. At each path vertex, a new random direction is sampled to
provide a numerical estimate of the irradiance. Additionally, next
event estimations can be performed at each path vertex in which the
direct illumination is calculated for some chosen light source. Light
tracing [Arv86, DLW93] starts paths at light sources and proceeds
in the same Monte-Carlo manner like path tracing. A next event es-
timation in light tracing connects the light path vertex with the ob-
server through projection [DLW93]. Another path tracing approach
from Henrich et al. [HBGM11] uses back projection of eye-path
vertices to generate more paths. This is not equivalent to projecting
light-path vertices, as no bi-directionality is introduced.

Bi-directional Path Tracing combines the two elementary ap-
proaches [LW93, VG95]. It connects light-path vertices with eye-
path vertices and weights their contribution based on heuristics
(multiple importance sampling). If both elementary strategies cre-
ate certain paths with a low probability (e.g. SDS†), the bidirec-
tional path tracer will still produce a high variance output.

An entirely different approach which explicitly searches in path
space is Metropolis Light Transport (MLT) [VG97, Vea97]. Here,
the search is performed by mutations of initial paths. It is inher-
ently difficult to implement and, depending on the quality of path
mutation strategies, it may produce poor results often containing
structured noise.

Photon Mapping connects light-paths with eye-paths in a biased
way by merging close vertices [Jen96]. Therefore, photons (light-
path vertices) are stored in a search data structure. Later, a density
estimate is performed at the first diffuse eye-path vertex. There are
numerous strategies considering different initial eye-paths before
performing the density estimate [Chr99, Jen01, HHS05, QSH∗15].
We reverse this idea by storing hit points and switching the two
passes like [HHS05]. However, in our approach storing hit points
decreases the memory requirements of the search data structure
which is the opposite of the final gathering strategy in [HHS05].

The first consistent photon mapping is using a progressive de-
crease in the query radius such that the merging bias converges
to zero over time [HOJ08] (PPM). While the original radius es-
timate of Hachisuka et al. guaranteed a constant amount of pho-
tons in the query area, this guarantee is not necessary. Knaus and

† Heckbert’s notation [Hec90]: Paths can be described by regular expres-
sions with one symbol per vertex, where L=Light, E=Eye, D=Diffuse re-
flection and S=Specular reflection.

Zwicker [KZ11] proved the different, simpler radius update

ri+1 = ri

√
i+α

i+1
(1)

to be consistent. The user parameter α steers the tradeoff between
a late visible bias and early high-frequency noise. Values in the
range [1/3, 2/3] produce the best results. We use this strategy in our
consistent scenarios.

Like our approach, PPM stores hit points in a first pass and then
distributes photons into the hit points until convergence. Stochastic
Progressive Photon Mapping (SPPM) [HJ09] allows a wider range
of effects like anti-aliasing and depth-of-field by redistributing hit
points after each photon iteration. Our method differs in the point
that we use light path projection instead of merging for many paths.

Other Sampling Strategies combine Photon Mapping with Bi-
directional Path Tracing to reproduce even more complex light
paths. Two equivalent methods, Vertex Connection and Merging
(VCM) [GKDS12] and Unified Path Sampling (UPS) [HPJ12],
were found independently at the same time. However, VCM/UPS
and SPPM do not recover from early iterations’ artifacts in prac-
tice. Unbiased Photon Gathering (UPG) [QSH∗15] improves upon
the gathering event by computing probabilities more carefully. To
the best of our knowledge this is the most qualitative general GI
method, but it requires a variable count of trial rays per connection
event, which is not suitable for GPU implementations.

Guidance can be used to enhance any of the previous sampling
methods. The idea is to improve the importance sampling while
tracing paths by using the adjoint information. I.e. eye-paths are
distributed under a light field while light-paths are modified by an
importance field. The first approach in that direction is the pre-
decessor of photon mapping by Jensen [Jen95]. Guidance meth-
ods were improved over the years, ranging from [HP02] up to
[VKŠ∗14] and [HEV∗16] where Gaussian mixture models are used
to model the light/importance fields. Another variance reduction
technique, which can be combined with all sampling strategies,
is path splitting and termination based on expected path contribu-
tion [VK16].

3. Pixel Cache Light Tracing

The idea behind pixel cache light tracing is to combine several low-
variance sampling techniques without multiple importance sam-
pling. Whitted style ray tracing [Whi79] (Figure 2a) is one of those
techniques. It stops the tracing at the first diffuse bounce and com-
putes the direct illumination at that point. All missing global illumi-
nation effects, like indirect light and caustics, are included in light
tracing with high quality (Figure 2c). However, light tracing cannot
cover specular reflections towards the eye on highly glossy surfaces
(e.g. mirrors and glass) without an extremely high variance.

The PCLT algorithm is a two pass algorithm which uses pro-
gressive photon gathering (Equation (1)) for Whitted style paths
and light tracing otherwise. In the first pass, the diffuse endpoints
of traced eye-paths are stored in a hash grid (Figure 3 paths 4 and
5), excluding those which are directly visible (path 6). In the second
pass, a light tracer is executed with two different operations at each
vertex. The first operation is a radiance estimate for close eye-path

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

138

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

(a) Whitted ray tracing (b) Pixel cache (c) Light tracing (d) Full solution (b)+(c)

Figure 2: Contributions of different tracing strategies. Note that the materials have a Fresnel specular component with varying roughness,
which produce the reflections visible in image (b) and (d).

×

××

specular

diffuse

glass

1

2

3

4
5

6

Figure 3: Paths used by PCLT: most paths are created by light
tracing with a connection to the eye (dashed: 1,2,3). Only eye-paths
with at least one specular bounce (4,5) are stored in the pixel cache.
They contribute through gathering if hit by a photon directly (col-
ored dots).

vertices using the hash grid. The second operation is a projection to
the camera (next event estimation; Figure 3 paths 1,2 and 3). The
radiance estimate is skipped if there is no close pixel cache entry
and the projected contribution is skipped if the point is not visible
from the eye. The contributions of the two operations are shown in
Figure 2b and 2c.

The pixel cache is a data structure that contains at most one hit
point for each pixel. In each iteration, we trace eye-paths until the
importance sampling yields a diffuse (Lambertian) scattering event
and store this last path vertex. This allows materials to have com-
bined specular and diffuse layers and produces paths of the form
ES*D. Since light tracing often yields superior results compared to
gathering we do not store paths of the form ED (direct visible dif-
fuse) and use projection in that case. A radiance estimate with the
stored hit points only needs to compute diffuse lighting. If the ma-
terial has a specular layer the contribution is handled by other eye-
paths through importance sampling. Opposed to the adjoint photon
maps, this cache depends on the number of eye-paths. We observed
that increasing the number of light-paths (photon count) is more
beneficial for the image quality than increasing the number of eye-
paths (for an example see Figure 7). Thus, using a pixel cache re-
duces the memory requirements and build times for the search data
structures.

4. GPU Hash Grid

To query hit points in the surrounding of light path vertices we need
a fast search structure. On CPU, a common choice is a kd-tree.
On GPU, hash grids are usually faster and simpler to implement
[HJ10]. In a hash grid, positions are discretized to grid coordinates.
The content of the cells is then stored into a hash map. To find all
particles in the vicinity of a query point, only a few cells must be
iterated. If the grid spacing is at least twice as large as the query
radius it is sufficient to look at the 23 = 8 closest cells.

The most difficult part of the hash grid is the underlying par-
allel hash map. In [ASA∗09] a complex hash map hybrid using
cuckoo hashing is presented. However, according to Hachisuka and
Jensen [HJ10] stochastic hash maps are more efficient for photon
mapping. In a stochastic hash map collisions are resolved by dis-
carding data with a probability inverse to the number of collisions at
this location. We implemented a different hash map using chaining
based on [Alc11]. A comparison between stochastic hash mapping
and our version is shown in Figure 8.

Our hash map consists of two data structures. One buffer with
key-link pairs and one buffer containing the data plus a linked list
index serving as next pointer for other data entries. The algorithm
for adding a data value to the hash grid is shown in Listing 1.

Listing 1: Chained hash map implementation

insertToHashGrid(vec3 position, Data data)
store data (will be referenced from HM or
linked list later).
dataIdx = atomicCounterIncrement(g_counter)
g_dataBuffer[dataIdx] = data;

hash = worldPosToGridCellHash(position)
idx = hash % HASH_MAP_SIZE
while true:

Try to place the current cell in the map.
key = atomicCompSwap(g_hashMap[idx].x,~0,hash)
If empty, or the same cell add to list
if key == hash || key == ~0:

g_dataBuffer[dataIdx].next =
atomicExchange(g_hashMap[idx].y, dataIdx)

break
end
Collision with different cell -> probing
idx = (idx + <probeDistance>) % HASH_MAP_SIZE

end
end

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

139

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

The first atomic operation implements an append buffer. This
can be removed if each thread gets a memory range for its output.
In our experiments this did not change the performance.

The other two atomic operations handle the cell-insertion to the
map and the data insertion to the linked list of that cell. If two cells
have an identical hash, their particles will fall into the same list.
This increases the runtime of the search in theory - in practice we
did not observe any penalty on runtime.

For collision handing between cell with a different hash, we tried
linear and quadratic probing and found quadratic probing to be
much faster which is in accordance to [Alc11].

4.1. Pixel Cache Data

We use the above hash map to store the following entry for the last
vertex on an eye-path:

uint32 nextEntry # hash map chain
vec3 eyePathThroughputWeight
vec3 hitPosition # vertex position
uint16[2] pixelCoordinate # pixel origin

Here, eyePathThroughputWeight is the cumulated path
weight ∏ f (v, i)/psampling where f is the BSDF at the hit points
and psampling the probability distribution function used for sam-
pling. Note that neither BRDF nor incident direction information
are stored. This is a consequence of our path combination strategy.
Using the global radius update (Equation (1)) it is not necessary to
store photon statistics per hit point.

We use the same hash map with a similar data structure in our
SPPM implementation.

5. Light Tracing Projection

A projection in our context is equal to a next event estimation from
the light-path to the sensor. While many of the bi-directional algo-
rithms include this type of path, we have not found the required
formula in the current literature. In Section 5.1 a formula which
computes the light transport from an incident photon on a surface
to a pinhole camera is derived. It is then extended to larger filter
kernels in Section 5.2.

Before projection, the pixel coordinate of the path vertex is com-
puted and an occlusion ray is cast. Since this is one of the most time
consuming steps in our GPU PCLT implementation we propose a
biased optimization in Section 5.3.

5.1. Visible Radiance from the Sensor

First, details on nomenclature can be found in Figure 4. All quan-
tities with an index s are measured at the surface and all with an
index p at the pixel (or pinhole respectively). Especially, these are:
θp the angle between the view direction and the direction through
the pixel center, ωp the solid angle of the pixel and θs the angle
between surface normal and the connection to the pinhole.

Beginning with the definition of the BSDF as the ratio between

pe

ps

Φin

i

v

θp

θs

ωp

dAs cosθs
pp

Ap

1
+

Figure 4: Projection to a pin-hole camera with focal length 1.0
located at pe. All pixels on the virtual plane have the same area
Ap. The projection of ps falls on pixel pp for which we know the
solid angle ωp. Φin is the flux of a photon coming from direction i.

excident radiance L and incident irradiance E we can derive the
outgoing flux Φs into observer direction v:

f (i,v) = dL(v)
dE(i)

=
d2

Φs

dΦindωs cosθs

⇒ d2
Φs = f (i,v)dΦindωs cosθs, (2)

where dωs is the solid angle from the surface to the observer. For
the pinhole this quantity is aligned with the direction v and goes to
zero (and is therefore not existent/included in the Figure). However,
this is no problem as it cancels out in the ongoing derivation.

Interpreting the projection as a single path tracing sample we
want to calculate the radiance at the surface

Ls =
d2

Φs

dωsdAs cosθs
.

Inserting Equation 2 gives

Ls =
dΦin f (i,v)cosθs

dAs cosθs
(3)

with dωs already canceled out. Now we can approximate the visible
area dAs cosθs from the pixel, dependent on the pixel’s solid angle
ωp, with ωp‖pe−ps‖2 and insert that into equation 3:

Ls ≈
dΦin f (i,v)cosθs

ωp‖pe−ps‖2 .

To express the solid angle of a pixel ωp, we describe the pixel’s
solid angle with respect to a virtual plane in a distance of 1.0 to the
pinhole camera which is also shown in Figure 4. Applying simple
trigonometry we get

ωp ≈
Ap cosθp

‖pe−pp‖2 = Ap cos3
θp.

Therefore, the final result describing the influence of a photon to
the radiance seen in the pixel is

Ls ≈
Φin f (i,v)cosθs

Ap cos3 θp‖pe−ps‖2 . (4)

5.2. Image Reconstruction Filters in Projection

Equation (4) is implementing a box filter per pixel. Other filters,
using a custom weight w(r) with r being the distance from the pixel

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

140

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

144s 189s

Figure 5: Equal path count comparison between SPPM (left) and
PCLT (right) (5000 iterations with an equal number of eye-paths
and light-paths). Scene from PBRT book [PJH17].

center to the sample, can be integrated into projection by looping
over a small neighborhood of pixels. In this case it is wrong to
compute the solid angle of a pixel ωp. Instead, we need the solid
angle of the filter ωw ≈ Aw cos3

θw. Here, θw is the angle between
view direction and sample direction (instead of the pixel center)
and Aw the filter area in the image plane (similar to Ap).

5.3. Faster Occlusion Tests

It is possible to speed up the visibility test by replacing the ray
cast with a z-buffer comparison. Unfortunately, this also introduces
a bias which cannot be removed [HBGM11]. We used a stochas-
tic z-buffer which is generated by the first pass together with the
pixel cache. Instead of the pixel center depth like in [HBGM11], a
sampled depth anywhere in the pixel is produced. A projection is
accepted if the point is closer to the camera than the current depth
value plus a small offset. This approach yields a systematic energy
loss on planar surfaces as shown in Figure 6 (first row).

In a second approach we stored position and geometry normal
at the first hit point and performed half space tests with this plane.
Projections are accepted if the distance to the plane is greater than
−z · ε, where the view depth z accounts for the greater pixel foot-
prints in the distance. The parameter ε depends on resolution and
field-of-view. In our examples we use ε = 5 ·10−4. While this opti-
mization is still biased, the visible error is very small, as the second
row in Figure 6 shows.

6. Results

A first comparison of our method can be found in the teaser (Fig-
ure 1) which shows a diffuse BunnyDuck in a glass container and
a mirror. PCLT reaches the quality of SPPM but with sharper caus-
tics. While all methods should converge to the same output, LT,
PT and BPT fail to produce many types of paths. These have very
small probabilities and are practically impossible. For the same rea-
son PCLT misses some multi-specular reflections. In the scene, the
floor has a rough specular layer. A resulting reflection of the light

143s 8x Difference

143s 8x Difference

Figure 6: Performance and error of z-buffer (first row) and plane
(second row) based visibility test compared to Figure 5.

source is not visible, because this pure specular path is not repro-
duced by LT in practice. SPPM produces correct results, except the
missing direct light source reflections on the mirror and the cube
(bright dots in all other images). In a comparison between SPPM
and our PCLT, PCLT generates the sharper image.

The equal iteration comparison in Figure 5 compares only SPPM
and PCLT because the other methods do not achieve the full path
spectrum. Again, PCLT produces sharper results on diffuse and
mixed material surfaces. However, PCLT still uses gathering for
reflective and refractive surfaces. Therefore, the images in the mir-
ror are very similar in both pictures. Since many scenes mainly
consist of diffuse and mixed materials, our algorithm can improve
their rendering results.

Comparing the timings in Figure 5 reveals that our algorithm is
31% slower than SPPM. The reason is the additional visibility test
during projection. Therefore, we rendered the same image again
using the z-buffer and plane-based tests which yields the results in
Figure 6. With this optimization, our algorithm has the same speed
as SPPM for the bathroom scene. However, using a simple z-buffer
comparison leads to a systematic loss of energy on planar surfaces,
whereas plane-based tests produce small errors along edges. Nev-
ertheless, the error from plane-based test is hardly visible and this
optimization should be used in practice.

Figure 7 demonstrates that using more light-paths than eye-paths
is more performant while yielding very similar results. Both, PCLT
and SPPM, are significantly faster when using more photons per it-
eration. For PCLT we used the plane-based visibility test to achieve
comparable timings. It also shows that memory costs are increas-
ing for SPPM when distributing more photons while the costs for
PCLT remain constant. However, the memory for the pixel cache
increases with image resolution. The map would need 82 MiB in
case of FullHD resolution. To compensate this, pixels could be
stored stochastically once the buffer is full.

The effect and performance of stochastic hash mapping is vi-
sualized in Figure 8. The first thing to be noticed is that photons

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

141

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

19.7 s 43 MiB 15.1 s 86 MiB 12.8 s 172 MiB

20.6 s 33 MiB 16.0 s 33 MiB 13.7 s 33 MiB

200 iterations with 218 photons each 100 iterations with 219 photons each 50 iterations with 220 photons each

Figure 7: Equal light path count comparison. Top row: SPPM, bottom row: PCLT. Using more photons per iteration improves performance
for both renderers, while having almost the same quality. Memory requirements increase for SPPM only. Scene from PBRT book [PJH17].

78.3 ms + 2109 ms 78.3 ms + 1979 ms 78.4 ms + 1979 ms 78.0 ms + 1956 ms

Full hash map 33 MiB Stochastic hash map 33 MiB Stochastic hash map 10 MiB Stochastic hash map 1 MiB

Figure 8: Our hash map compared to stochastic hash mapping. All images are rendered with 8 iterations. The timings are eye-pass and
light-pass respectively. The main difference in timing results from the number of radiance estimates in the light-pass.

do not spread over multiple pixel anymore. This is because in the
mirror neighboring pixels have path-endpoints which fall into the
same hash grid cell. Therefore, at most one pixel in each cell-
neighborhood will survive the stochastic collision handling. Fur-
ther collisions are no issue before forcing the map memory down
too much (see 1 MiB case). With respect to timings the two maps
are very similar. The only reason why the leftmost rendering, using
our full map, is slower, is that more pixels are found in the radi-
ance estimate. Hence, more projections are performed. For refer-
ence, if nothing is stored or searched in the pixel cache the timings
are 77.4 ms + 1882 ms. I.e. building and searching particles in the
hash map has negligible costs compared to the tracing.

Summarizing the results from Figures 1, 5 and 7, our method al-
ways produces the higher quality results in equal time comparisons.
Dependent on the z-buffer optimization this ratio can be improved
even more, losing the unbiasedness of the projection.

Eventually, PCLT shares the strengths and weaknesses of all

light tracing-based methods which includes all photon map-
ping techniques. In Figure 9 we compare the best non-
projection/gathering-based techniques to our algorithm for two ex-
treme scenarios. Scenario one contains many (69) light sources. In
such a case, next event estimation in PT or BPT often fails due
to occlusion. Contrary, an LT-based method distributes the photons
close to the light sources which produces much better results. For
the same reason only few photons of far distant light sources reach
visible regions which is shown in the second scenario. However, in
both scenarios the PCLT is faster than the compared methods for
the 1000 iterations. In an equal time comparison it would be even
better in the first case and not as bad in the second one.

A pattern in the noise can be observed in the front region of
the PCLT day light image, which we identified as a floating point
issue. The generated directions at the light source are not perfectly
uniform which is visible on this distance.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

142

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

BPT 376 s PCLT 258 s

PT 47.5 s PCLT 10.9 s

Figure 9: Strengths and weaknesses of light tracing-based render-
ers. The upper row shows a scenario with 69 indoor light sources,
which is bad for PT based methods because many of the next event
connections are occluded. On the other hand, LT has problems with
very distant light sources as shown the second row. All images are
computed with 1000 iterations.

7. Conclusions and Future Work

We presented PCLT, a simple light and eye path combination strat-
egy which is well suited for GPU implementations. In general it is
very similar to SPPM, but produces sharper images and requires
less memory for high photon throughputs. Unlike more complex
methods (VCM/UPS, UPG), it does not require multiple impor-
tance sampling and difficult probability estimations. High variance
noise only remains for pure specular paths.

However, our method shares many of the problems of the other
methods. For a very distant light source only a few rays reach
the view frustum, like in all photon mapping or light tracing ap-
proaches. Further, situations, in which light source and visible parts
are only connected by a small gap, produce only a few contribut-
ing paths. Both cases are handled similarly by different methods
and could be improved by guidance. Here, it might be possible to
find specialized solutions for PCLT. Another problem are the high
variance pure specular paths through light tracing. In some cases
those paths can be produced better by path tracing (see teaser im-
age) which could be incorporated using MIS. However, this would
also require tracing more paths/doing connection tests, resulting in
an strongly increased complexity.

Additionally, we proposed a lean parallel hash grid implementa-
tion which shows the same performance as a stochastic hash map
but does not lose information. This hash map can also be used in
other GPU-based implementations to reduce the variance from hash
collisions (SPPM, VCM/UPS, UPG).

8. Acknowledgements

This work is partially supported by the German Research Founda-
tion (DFG), Grant Nr. GR 3833/3-1.

References
[Alc11] ALCANTARA D. A. F.: Efficient Hash Tables on the GPU. PhD

thesis, University of California at Davis, 2011. URL: http://idav.
ucdavis.edu/~dfalcant/research.php. 3, 4

[Arv86] ARVO J.: Backward Ray Tracing. In Computer Graphics (Proc.
SIGGRAPH) (1986), pp. 259–263. 2

[ASA∗09] ALCANTARA D. A., SHARF A., ABBASINEJAD F., SEN-
GUPTA S., MITZENMACHER M., OWENS J. D., AMENTA N.: Real-
time Parallel Hashing on the GPU. ACM Transactions on Graphics
(TOG) 28, 5 (Dec. 2009), 154:1–154:9. URL: http://doi.acm.
org/10.1145/1618452.1618500. 3

[Chr99] CHRISTENSEN P. H.: Faster Photon Map Global Illumination.
Journal of Graphics Tools (JGT) 4, 3 (1999), 1–10. URL: http://
dx.doi.org/10.1080/10867651.1999.10487505. 2

[DLW93] DUTRÉ P., LAFORTUNE E. P., WILLEMS Y. D.: Monte Carlo
Light Tracing with Direct Computation of Pixel Intensities. In Proc.
of Computational Graphics and Visualisation Techniques (Dec. 1993),
pp. 128–137. URL: https://lirias.kuleuven.be/handle/
123456789/132745. 2

[GKDS12] GEORGIEV I., KŘIVÁNEK J., DAVIDOVIČ T., SLUSALLEK
P.: Light Transport Simulation with Vertex Connection and Merging.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 192:1–192:10.
URL: http://doi.acm.org/10.1145/2366145.2366211. 2

[HBGM11] HENRICH N., BAERZ J., GROSCH T., MÜLLER S.: Ac-
celerating Path Tracing by Eye-Path Reprojection. In International
Congress on Graphics and Virtual Reality (GRVR) (2011). URL:
http://www.rendering.ovgu.de/rendering_media/
downloads/publications. 2, 5

[Hec90] HECKBERT P. S.: Adaptive Radiosity Textures for Bidirec-
tional Ray Tracing. Computer Graphics (Proc. SIGGRAPH) 24, 4
(Sept. 1990), 145–154. URL: http://doi.acm.org/10.1145/
97880.97895. 2

[HEV∗16] HERHOLZ S., ELEK O., VORBA J., LENSCH H., KŘIVÁNEK
J.: Product Importance Sampling for Light Transport Path Guiding.
Computer Graphics Forum (CGF) 35, 4 (2016), 67–77. URL: http:
//dx.doi.org/10.1111/cgf.12950. 2

[HHS05] HAVRAN V., HERZOG R., SEIDEL H.-P.: Fast Final Gather-
ing via Reverse Photon Mapping. Computer Graphics Forum (CGF)
24, 3 (2005), 323–332. URL: http://dx.doi.org/10.1111/j.
1467-8659.2005.00857.x. 1, 2

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic Progressive Pho-
ton Mapping. ACM Transactions on Graphics (TOG) 28, 5 (Dec.
2009), 141:1–141:8. URL: http://doi.acm.org/10.1145/
1618452.1618487. 1, 2

[HJ10] HACHISUKA T., JENSEN H. W.: Parallel Progressive Pho-
ton Mapping on GPUs. In ACM SIGGRAPH Asia Sketches (2010),
ACM, p. 54. URL: http://doi.acm.org/10.1145/1899950.
1900004. 3

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progressive Pho-
ton Mapping. ACM Transactions on Graphics (TOG) 27 number 5
(2008), 130. URL: http://doi.acm.org/10.1145/1409060.
1409083. 1, 2

[HP02] HEY H., PURGATHOFER W.: Importance Sampling with Hemi-
spherical Particle Footprints. In Proc. of Spring Conference on Com-
puter Graphics (2002), SCCG ’02, ACM, pp. 107–114. URL: http:
//doi.acm.org/10.1145/584458.584476. 2

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A Path Space
Extension for Robust Light Transport Simulation. ACM Transactions
on Graphics (TOG) 31, 6 (Nov. 2012), 191:1–191:10. URL: http:
//doi.acm.org/10.1145/2366145.2366210. 2

[Jen95] JENSEN H. W.: Importance Driven Path Tracing Using the Pho-
ton Map. In Proc. of Eurographics Workshop on Rendering (EGWR)
(1995), EGWR, Springer, pp. 326–335. URL: http://dx.doi.
org/10.1007/978-3-7091-9430-0_31. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

143

http://idav.ucdavis.edu/~dfalcant/research.php
http://idav.ucdavis.edu/~dfalcant/research.php
http://doi.acm.org/10.1145/1618452.1618500
http://doi.acm.org/10.1145/1618452.1618500
http://dx.doi.org/10.1080/10867651.1999.10487505
http://dx.doi.org/10.1080/10867651.1999.10487505
https://lirias.kuleuven.be/handle/123456789/132745
https://lirias.kuleuven.be/handle/123456789/132745
http://doi.acm.org/10.1145/2366145.2366211
http://www.rendering.ovgu.de/rendering_media/downloads/publications
http://www.rendering.ovgu.de/rendering_media/downloads/publications
http://doi.acm.org/10.1145/97880.97895
http://doi.acm.org/10.1145/97880.97895
http://dx.doi.org/10.1111/cgf.12950
http://dx.doi.org/10.1111/cgf.12950
http://dx.doi.org/10.1111/j.1467-8659.2005.00857.x
http://dx.doi.org/10.1111/j.1467-8659.2005.00857.x
http://doi.acm.org/10.1145/1618452.1618487
http://doi.acm.org/10.1145/1618452.1618487
http://doi.acm.org/10.1145/1899950.1900004
http://doi.acm.org/10.1145/1899950.1900004
http://doi.acm.org/10.1145/1409060.1409083
http://doi.acm.org/10.1145/1409060.1409083
http://doi.acm.org/10.1145/584458.584476
http://doi.acm.org/10.1145/584458.584476
http://doi.acm.org/10.1145/2366145.2366210
http://doi.acm.org/10.1145/2366145.2366210
http://dx.doi.org/10.1007/978-3-7091-9430-0_31
http://dx.doi.org/10.1007/978-3-7091-9430-0_31

J. Jendersie, K. Rohmer, F. Brüll, T. Grosch / Pixel Cache Light Tracing

[Jen96] JENSEN H. W.: Global Illumination using Photon Maps. In
Proc. of Eurographics Workshop on Rendering (EGWR) (1996), EGWR,
Springer, pp. 21–30. URL: http://dl.acm.org/citation.
cfm?id=275458.275461. 1, 2

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon Map-
ping, vol. 364. Ak Peters Natick, 2001. URL: http://graphics.
ucsd.edu/~henrik/papers/book/. 2

[Kaj86] KAJIYA J. T.: The Rendering Equation. In Computer Graph-
ics (Proc. SIGGRAPH) (1986), SIGGRAPH, ACM, pp. 143–150. URL:
http://doi.acm.org/10.1145/15886.15902. 2

[KZ11] KNAUS C., ZWICKER M.: Progressive Photon Mapping: A
Probabilistic Approach. ACM Transactions on Graphics (TOG) 30, 3
(2011), 25. URL: http://doi.acm.org/10.1145/1966394.
1966404. 1, 2

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-Directional Path Trac-
ing. In Proc. of Conference on Computational Graphics and Visual-
ization Techniques (1993), pp. 145–153. URL: https://lirias.
kuleuven.be/handle/123456789/132773. 2

[PJH17] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, 3 ed. Morgan Kaufmann,
2017. URL: http://www.pbrt.org/. 5, 6

[QSH∗15] QIN H., SUN X., HOU Q., GUO B., ZHOU K.: Unbiased
Photon Gathering for Light Transport Simulation. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 208:1–208:14. URL: http://doi.
acm.org/10.1145/2816795.2818119. 1, 2

[Vea97] VEACH E.: Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, 1997. URL: http://
graphics.stanford.edu/papers/veach_thesis/. 2

[VG95] VEACH E., GUIBAS L. J.: Bidirectional Estimators for Light
Transport. In Photorealistic Rendering Techniques. Springer Berlin
Heidelberg, 1995, pp. 145–167. URL: http://dx.doi.org/10.
1007/978-3-642-87825-1_11. 2

[VG97] VEACH E., GUIBAS L. J.: Metropolis Light Transport. In Pro-
ceedings of SIGGRAPH ’97 (1997), SIGGRAPH, pp. 65–76. URL:
http://dx.doi.org/10.1145/258734.258775. 2

[VK16] VORBA J., KŘIVÁNEK J.: Adjoint-Driven Russian Roulette and
Splitting in Light Transport Simulation. ACM Transactions on Graph-
ics (TOG) 35, 4 (2016), 1–11. URL: http://doi.acm.org/10.
1145/2897824.2925912. 2

[VKŠ∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
J.: On-line Learning of Parametric Mixture Models for Light
Transport Simulation. ACM Transactions on Graphics (TOG) 33,
4 (2014). URL: http://cgg.mff.cuni.cz/~jaroslav/
papers/2014-onlineis/. 2

[Whi79] WHITTED T.: An Improved Illumination Model for Shaded Dis-
play. Computer Graphics (Proc. SIGGRAPH) 13, 2 (Aug. 1979), 14–.
URL: http://doi.acm.org/10.1145/965103.807419. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

144

http://dl.acm.org/citation.cfm?id=275458.275461
http://dl.acm.org/citation.cfm?id=275458.275461
http://graphics.ucsd.edu/~henrik/papers/book/
http://graphics.ucsd.edu/~henrik/papers/book/
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/1966394.1966404
http://doi.acm.org/10.1145/1966394.1966404
https://lirias.kuleuven.be/handle/123456789/132773
https://lirias.kuleuven.be/handle/123456789/132773
http://www.pbrt.org/
http://doi.acm.org/10.1145/2816795.2818119
http://doi.acm.org/10.1145/2816795.2818119
http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/
http://dx.doi.org/10.1007/978-3-642-87825-1_11
http://dx.doi.org/10.1007/978-3-642-87825-1_11
http://dx.doi.org/10.1145/258734.258775
http://doi.acm.org/10.1145/2897824.2925912
http://doi.acm.org/10.1145/2897824.2925912
http://cgg.mff.cuni.cz/~jaroslav/papers/2014-onlineis/
http://cgg.mff.cuni.cz/~jaroslav/papers/2014-onlineis/
http://doi.acm.org/10.1145/965103.807419

