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Abstract. Surface reconstruction from contours is an important problem espe-
cially in medical applications. Other uses include reconstruction from topographic
data, or isosurface generation in general. The drawback of existing reconstruction
algorithms from contours is, that they are relatively complicated and often have
numerical problems. Furthermore, algorithms to generate multiresolution surface
models do not exploit the special situation having contours.

In this paper we describe a new robust and fast reconstruction algorithm from
contours that delivers a multiresolution surface with controlled distance from the
original contours. Supporting selective refinement in areas of interest, this mul-
tiresolution model can be handled interactively without giving up accuracy.

1 Introduction and previouswork

In medical applications very often tomography-techniques are used to acquire the data.
These techniques deliver voxel data sets consisting of a staple of slices (images) where
the distance of the slices in general is much larger than the pixel distance within one
slice. Therefore, the data can also be considered as an unisotropically sampled voxel set
(undersampled in one direction). The general approaches to reconstruct the surface are
outlined in Fig. 1. There are two main approaches: a direct and an indirect approach.
In the direct approach isosurfaces are extracted from the preprocessed voxel data set
using the well known and fast Marching Cubes (MC) algorithm [18]. The preprocess-
ing should perform a continuous classification of the original voxel data, so that the
desired surface can be described as an isosurface of the voxel data set. Unfortunately,
because of the lack of appropriate alternatives very often only very simple preprocess-
ing like simple noise filtering is applied. If the data set is sampled sufficiently and if the
classification doesn’t pose problems this approach delivers good results,. If however
the sampling in one direction is not sufficient, which is very common e.g. in medical
applications, the linear interpolation in the MC algorithm depends on wrong assump-
tions and the resulting surfaces contains staircase artifacts revealing the slice structure.
Furthermore, the resulting surfaces often consist of millions of triangles due to the reg-
ular space partitioning used in the MC algorithm. It was soon recognized that without
mesh simplification techniques, models produced by the MC could not be handled [26].
As an alternative to the costly simplification algorithms several attempts on adaptive
MC schemes with different but not fully satisfactory results [2, 28, 22] have been un-
dertaken.
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Fig. 1. The main approaches to surface reconstruction from volume data.

In the indirect approach an intermediate step is introduced: contours are extracted
from the 2D-slices resulting in a staple of contours. For this purpose 2D-segmentation
algorithms are used. In this approach interactive input or manipulation is possible to
guide the segmentation. For the reconstruction of the surface from the contour sta-
ples again two alternatives are possible, either to voxelize the contours again by filling
them and then using a MC algorithm or to construct a triangular facet surface by con-
necting two neighboring contours. Using the MC algorithm in this setting suffers from
the already discussed problems: staircase artifacts (due to the undersampling and 1-bit
quantization especially bothersome) and very large surface models. A large number of
publications treat the problem of connecting contours, see [14, 8, 4,17, 3,20, 1, 23] and
[19,21,27] for overviews. All these algorithms have to decide which vertices in the
neighboring contour must be connected with a given vertex to form triangles. Unfortu-
nately, this correspondence problem cannot be answered uniquely and suffers from the
same problem of missing information caused by the undersampling of the original data
like the MC algorithm.

1.1 Thedistancefield interpolation

One possibility to overcome the problem of missing data between the slices is to inter-
polate the so called distance field between the contours [17,24, 10, 7]. Using distance
field interpolation, a triangulation of the isosurface can be obtained by applying the
MC-algorithm to the unmodified distance-field. In such a way the stair-case artifacts
normally produced by the MC-algorithm are avoided. In [13] this idea is realized with-
out mentioning distance-field interpolation. Since our approach is also based on this
principle we briefly review this method.
Let {2 be the 3D object and

Qi = {(x,y)|(x,y,zl) € “Q}



a finite set of cross sections. Then the distance fields at the levels zg, . . . , z,, are defined
by

_ [ —dist((z,y)042;) if(z,y) € 12
Di(z,y) = {dz’st((x,y)aﬂi) otherwise

where 9¢2; denotes the boundary of {2; which is described by the the contours and dist
denotes the Euclidean distance within the slices. Now an interpolation of the distance
values in z-direction is used to find intermediate contours (where the interpolated dis-
tance is zero). Another approach that can be considered as a special case of the distance
field interpolation is the use of the medial axis between contours from neighboring
slices [23]. The medial axis between the contours of slice ¢ and i — 1 is identical to the
contour resulting from a distance field interpolation in the plane z = 0.5 - (z,—1 + z:).
In [23] an approximation of the medial axis is used as the basis of an elaborate recon-
struction algorithm that allows to use multiple intermediate levels in cases where the
geometry of subsequent contours is too different. Although in the paper nice results of
this algorithm are shown, a fixed size model is produced. The number of triangles in the
model depends on the number of vertices in the original contours and therefore, on the
accuracy used in the approximation of the contours. The size of the resulting surface
models is smaller than the size of a model produced by the MC algorithm if the con-
tours are approximated with the same accuracy, but not sufficiently small for interactive
rendering. The use of simplification techniques is therefore still necessary.

1.2 Simplification algorithmsand multiresolution models

A large number of simplification algorithms for triangle meshes have been developed,
but only a part of them can guarantee a certain geometric approximation error between
simplified and original mesh [16, 6]. However, this error must be known to guarantee
a certain quality for the rendered images of the simplified model. Unfortunately, the
simplification algorithms with this feature are very slow (see [5] for a comparison) or
produce over-estimations of the error [25, 9] that make the results useless for multires-
olution models aiming for view-dependent refinement.

In the rest of the paper we describe a new robust and fast reconstruction algorithm
combined with a simplification technique, that exploits the special situation we are
faced with when reconstructing from contours. In this way a very efficient technique
to measure the errors during the simplification process can be used, see 7.1. Section 2
gives a brief overview of the algorithm. Sections 3, 4, and 5 contain the reconstruction
part of the algorithm and section 7 the simplification part.

2 Overview of thealgorithm

In principle the algorithm consists of two main steps: the reconstruction of the surface
and the simplification of this surface. However both steps are closely related since the
distance field is used for the reconstruction as well as for the simplification step. The
outline of the algorithm is as follows:



I. Reconstruction 1. Extraction of 2D-contours. We start with a staple of segmented im-
ages, where for each pixel it is known if it belongs to the object or not. In the first
step the boundary of the object is determined and the boundary pixels are marked and
numbered sequentially. Each contour is identified with a unique number. To avoid topo-
logical problems, this step is performed in a grid containing not only the midpoints of
the pixels but also their corners. Second, during the extraction of the contours adja-
cent slices are checked for overlapping areas to identify the connectivity of contours
in different slices. 2. Simplification of contours. After this, each contour is simplified
up to a certain approximation error (we use half a pixel). In this way to every edge of a
simplified contour the maximum geometric approximation error between the edge itself
and the corresponding part of the original contour is known.

3. Computation of medial axesinclud-
ing correspondence. If we consider the
simplified contour at the lowest resolu-
tion guaranteeing a maximum error of
half a pixel, the pixels of the original con-
tour can be regarded as one possible rep-
resentation in image space and the origi-
nal pixels can be classified as vertices or
inner points of edges. Now, the distance
field is computed and afterwards the me-
dial axes between contours from differ- Fig.2. The arrows from a pixel on the me-
ent slices are extracted. To each pixel of  dial axis to the two contours A and B re-
the medial axes two pointers to the clos-  spectively indicate the correspondences to
est pixels on both contours are stored, the closest pixels on the contours.

see Fig. 2.

4. Surfacetriangulation. After the computation of the medial axes and the correspon-
dences above, a triangulation of the resulting surface is computed. The main idea is
to trace the medial axes and use the correspondences to pixels on the two neighboring
contours to connect the vertices by edges.

Contour 4
Ccontour B

Il. Smplification 1. Edge collapse. In the simplification algorithm simple edge collapse
operations are performed [12]. The order of the edge collapse operations is determined
by a priority queue based on the error that would be introduced if the edge was col-
lapsed. 2. Error measurement. To measure the error introduced by an edge collapse,
the distance field computed above is exploited. The intersection lines of the newly cre-
ated triangles with the respective slices are rendered (using Bresenham algorithm) into
the images of the slices. While rendering the distance values are read from the distance
map of the corresponding slice, see Fig. 8.

3 Simplification of contours

To simplify the contours a modified version of the Douglas-Peucker-algorithm is used
[11]. This algorithm starts with one arbitrary vertex of the original contour. In each sub-
sequent step a further point (with greatest distance to the current polygon) of the original



contour is inserted. To find this point with greatest distance a convex hull technique is
used, that reduces the complexity of the algorithm from O(n?) to O(nlogn).

4 Computation of the medial axes and correspondences

4.1 Thedistancefield

For our purpose the application of a simple distance transform to compute the distance
field and the medial axes is not sufficient, since we also want to know for each pixel
which is (are) the closest pixels on the border. Therefore, we use a simple filling tech-
nique based on the following observations: Starting from a point on a contour there exist
only four basic configurations of neighboring contour pixels from which all others can
be deduced using symmetries, see Fig. 3. For each configuration the area of pixels that
are closer to the pixel than to its two neighbors can easily be determined. Therefore, for
each contour pixel only certain image pixels are visited and filled with the distance to
the contour pixel.

During the filling a pointer to the bor-
der pixel from which the filling started
is stored in each image pixel. The fill-
ing stops if the border of the image is
reached or lower distance values are al-
ready present in a pixel, that indicate that
further pixels to be filled are closer to
another part of the contours of the same
slice.

To speed up the filling process and
reduce the number of updates of distance  Fig. 3. Four basic configuratuions of con-
values in a pixel we first fill horizontal tour pixels. Black: Contour pixels, gray:
and vertical lines and only then the more  pixels to be filled with distance values,
complicated areas. A further speed up is  white: pixels, that are filled starting from
achieved by starting the filling on border  other contour pixels.
pixels that belong to a coarse rectangular
grid, thereby considerably reducing the areas to be filled.

4.2 Themedial axis

After the computation of the distance field it is easy to extract the medial axes between
contours of neighboring slices. First the two distance fields are added. The resulting
image contains connected regions i of positive (including zero) or negative values, re-
spectively, see Figure 4. The borders between these areas constitute the medial axes.
These borders are extracted with an algorithm which scans the image for a change of
the sign and then immediately traces and marks the pixels of encountered medial axes.
For each new medial axis a pointer to one of its pixels is stored.



Fig. 4. Adding the two distance fields of consecutive slices delivers the medial axes at pixels
where the sign changes. Each slice contains two contours. The gray values in this image encode
the distance to the contours as well as the correspondences to the different contour pixels. For a
color version of this image see Fig. 10 (see Appendix).

5 Triangulation of the surface

Using the medial axes and the known correspondences to the closest points on the
contours the triangulation of the resulting surface is straightforward.

The basic step is to trace the medial axes, which are closed polygons. The tracing
starts at an arbitrary pixel of the medial axis. Let M be the medial axis and M;,i =
1,...,m its pixels. Let P and @ denote the contours corresponding to M and let
Pi o, Qo be the vertices of the polygon approximating P and @ respectively with a
maximum approximation error of 1/2 pixel. The pixels of the original contours between
the vertices are numbered with the second index e.g. the p; pixels P; 1, P o, ... , Pi p,
between P; o and P10, Where P; .., = P11, see Fig. 5.

When the pixels of the medial axis are traced in a sequential way, for each of its pix-
els the numbers ¢, & of the two corresponding contour edges P; o Pi+1,0 and Q@ 0Qr+1,0
are recorded. If, while tracing the medial axis the corresponding pixel on one of the con-
tours jumps to the next edge, e.g. from edge ¢ to edge ¢ + 1, the vertex P;;1 ¢ is put

—1-r

Fig.5. Triangulation of the contour (see text for details).



Fig. 6. Vertices "Q,o through Q44,0 are connected to P o or P10 resp. due to their corre-
spondences on the medial axis.

onto a stack S *. At the beginning we trace until in the sequence of recorded vertices on
contour P is followed by a vertex on contour ) or reverse. For simplicity we assume for
the following that we had a change from P to (). Then the two vertices are connected
by an edge and all other vertices are removed from the stack and the tracing proceeds
until again a change in the recorded vertices, now from contour ) to P occurs. Again
these two vertices are immediately connected and all remaining vertices that are already
on the stack are processed in the following way. The stack contains now a sequence of
the following form PQ . .. Q P, with one or more vertices from contour @) between two
vertices of contour P. The polygon defined by these vertices can be triangulated in dif-
ferent ways. Nice triangulations can be achieved exploiting the correspondences in the
following way. We connect all vertices on @ that correspond to pixels on the medial axis
that are closer to P;  than to ;1 o with P; o and the others with P;; o, see Fig. 6.

Until now we have assumed that we always found consecutive edges while tracing
the contours, but sometimes this may not happen, see Fig. 7. In these cases new ver-
tices are inserted into the contours. Let us assume that the correspondence changes as
shown in Fig. 7. Then we insert the vertices P; ., P, 3, @ ;s into the contours P and @,
respectively and we introduce one of the two pixels on the medial axis M; or M, (we
choose M;). The corresponding stripe is triangulated as shown in Fig. 7 and the vertices
Py, 5 and Q; s are put on the stack 2. Now the algorithm can proceed as described above
until all medial axes have been processed.

After processing all medial axes there remain parts of contours that had no corre-
spondence to a medial axis and are therefore not fully integrated in the triangulation.

! The handling of the special (simpler) case, where P and @ corresponds to the same pixel on
the medial axis is handled is not described here, but is straight forward

2 In some cases better triangulations can achieved with a more elaborated algorithm that inserts
two additional vertices on the medial axis into the triangulation.



Fig. 7. Left: When edges without correspondence on the medial axis are present, additional ver-
tices are introduced. Then the dark gray area can be triangulated. The white area remains to be
handled as shown on the right side: Various shades of gray show areas gained by multiple re-
cursive computations of medial axes between the vertices inserted on the medial axes and the
remaining part of the contours. In the Figure six recursion step are performed. The last inserted
vertex on the midline lies on a level of only 3—12 of the distance between the slices above the lower
slice. Therefore, the recursion could as well be terminated earlier without giving up much of the
quality.

These areas could be triangulated resulting in flat areas parallel to the slices (with the
exception of the vertices on the medial axis in between the two slices) [1]. But to im-
prove the results the newly introduced vertices on the medial axes can be considered as
new contours (in between the original contours) and the described algorithm (including
the calculation of new distance fields in the respective areas) is applied recursively, see
Fig. 7. Of course, contours without a neighboring contour in the next slice (end of the
object, end of the contour staple) are closed by a plane triangulation in the slice of this
contour. During simplification these triangles have to be treated separately in such a
way that the distance between the original position and the simplified triangulation can
be controlled.

Note, that the results achieved with our simple and fast triangulation algorithm are
similar to the ones achieved with the algorithm of Oliva et al [23].

6 Review of multiresolution modédls

6.1 Generating the multiresolution model

The generation of a MRM of an object generally involves a sequence of local simpli-
fication operations like vertex removal, edge collapse, triangle collapse or vertex clus-
tering. The sequence of local simplification operations defines a sequence of coarser
and coarser approximations of the original model, the MRM. How this sequence is
generated depends on the various simplification algorithms. In general a mesh simpli-
fication algorithm starts with the finest triangulation in 3D space approximating the



original model. Then it simplifies the starting triangulation by clustering vertices, by
collapsing edges or triangles or by removing vertices from the current triangulation and
retriangulating the resulting holes. This is done until no further simplification step can
be performed. In many algorithms the order in which the simplification steps are per-
formed is determined by a priority queue. A cost function is evaluated for each possible
simplification operation and the one with the lowest cost is performed. In general the
cost function represents the error (geometric distance) between original and simplified
mesh.

6.2 Selective refinement of multiresolution models

If the inverse local simplification operations are known (e.g. vertex split as the inverse
of edge collapse operation), we are able to refine a coarse approximation of the model
by reversing the whole simplification process. However, if we want to perform only
selective refinement we have to find a way to skip parts of the inverse simplification
process and thereby change the sequence of refinement operations. Of course this is
not arbitrarily possible (e.g. we cannot split a vertex which is not present in the current
mesh). The dependencies between the different simplification steps define a hierarchy
that can be described by a directed acyclic graph of modification operations or the asso-
ciated triangles. Therefore, a general selective refinement algorithm starts with a crude
approximation of the model and checks for each triangle if refinement is needed. If yes,
the algorithm has to take care that all predecessor operations of the needed refinement
operation have already been performed. The next section describes the measure that can
be used to decide about the need of further refinement of a certain triangle.

7 Simplification

The most expensive part of the simplification algorithm is the evaluation of the cost
function. In our case we need a geometric distance between the original contours and
the simplified model. According to our experience the quality of the resulting triangu-
lation does mainly depend on the order of the different simplification steps and not on
the special topological operations like vertex removal, edge- or triangle collapse [15].
Therefore, we use a simple edge collapse technique, where no new vertices are intro-
duced.

7.1 Measuringtheerror

To evaluate the cost function, that is to measure the error between original and sim-
plified surface model we use the fact that in each slice the distance field is already
calculated and delivers automatically a set of envelopes of the original contour. Based
on this observation the measurement of an error that would be introduced if an edge was
collapsed can easily be performed in the following way: Let A = A(p;, px, p;) be atri-
angle generated if the edge was collapsed spanning the slices m,m + 1,... ,n — 1,n.
Consider the line segments [;, m < i < n defined as the intersection between A and
the planes z = z,. For each slice we want to find the maximum distance between the
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Fig. 8. Measuring the approximation error by tracing Bresenham-lines in the distance fields of
the slices.

points of /; and the contour (2. To find this distance we first read the distance field at the
pixels intersected by the triangle A. These pixels can easily be determined by "drawing’
1; using a Bresenham algorithm, see Figure 8. 2

Note, that like in the simplification envelopes algorithm [6] also in our approach
a one-sided Hausdorff- distance between original and simplified triangulation is mea-
sured. Therefore, if this distance is smaller than a certain ¢, we guarantee that for every
point p of the simplified triangulation we can find a point ¢ on the original triangulation
with d(p, q¢) < e, but the inverse relation does not hold.

7.2 Acceleration of distance computation

For errors larger than 2 pixels in image space the read out of the distance values can be
accelerated by skipping |e —d — 1] pixels, where d is the distance readout at the current
position and ¢ is the already reached error between original and simplified model, as
from pixel to pixel in image space the distance can grow at most by 1. In this way the
drawback of the simplification envelopes algorithm [6] of having a fixed envelop and
therefore not being able to build up a reasonable multiresolution model is avoided.

% To obtain a smaller (but still conservative) estimation for the deviation from the original con-
tour, the maximum of the values read out from the distance field could be multiplied with
sin(a), where « is the angle between the normal of A and the z-direction, see Fig. 9. How-
ever, in this case it is important to take care of the bounds of the triangles.

o\ e sin(a)

€

Fig.9. The error ¢ read out from the distance field is multiplied by sin(«) to get the real approx-
imation error.



8 Conclusion and further work

The contribution to the problem of reconstruction from contours presented in this paper
is a twofold. On one hand the distance field is used for a robust reconstruction algorithm
based on the medial axes. In this algorithm the distance field is not only used to calculate
the medial axes, but also delivers correspondences used for an excellent triangulation.
On the other hand, the second big problem of current reconstruction algorithms, the
huge number of resulting triangles, is solved with a new fast simplification algorithm
that exploits the (already calculated) distance field to guarantee a certain approximation
error between the simplified surface models and the original contours.

This guarantees that in each level of detail, the contours are approximated with a
certain approximation error, since the intersections between the slices and the simplified
surfaces are within a certain envelop. A problem not yet recognized in the literature
is that in general it is not sufficient to guarantee only the distance of the simplified
models to certain points or vertices, since it may happen that between two consecutive
simplification steps although the distance to the points or vertices remains small or even
constant the distance between the two consecutive triangulations can be arbitrarily large.
This leads to artifacts in animations where the level of detail is changed. Currently we
are working on this problem. Our present research includes also the generalization by
using 3D-distance fields to control the approximation error.
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Sum of two distance fields of consecutive slices. Negative distance values are shown in
green, positive distance values in blue. The border constitutes the medial axis (shown
in yellow). The correspondences to the closest contourpixel are shown in red. (Schilling
et.al., Fig. 10)



