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Abstract

Brain MR images are one of the most important instruments for diagnosing neurological disorders such as tumors, infections
or trauma. In particular, grade I-1V brain tumors are a well-studied subject for supervised deep learning approaches. However,
for a clinical use of these approaches, a very large annotated database that covers all of the occurring variance is necessary. As
MR scanners are not quantitative, it is unclear how good supervised approaches, trained on a specific database, will actually
perform on a new set of images that may stem from a yet other scanner. We propose a new method for brain tumor segmentation,
that can not only identify abnormal regions, but can also delineate brain tumors into three characteristic radiological areas:
The edema, the enhancing core, and the non-enhancing and necrotic tissue. Our concept is based on FLAIR and TICE MRI
sequences, where abnormalities are detected with a variational autoencoder trained on healthy examples. The detected areas
are finally postprocessed via Gaussian Mixture Models and finally classified according to the three defined labels. We show
results on the BraTS2018 dataset and compare these to previously published unsupervised segmentation results as well as to
the results of the BraTS challenge 2018. Our developed unsupervised anomaly detection approach is on par with previously
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published methods. Meanwhile, the semantic segmentation - a new and unique model - shows encouraging results.

1. Introduction

Brain MR images are one of the most important instruments for
detecting and diagnosing brain lesions. Currently, the analysis and
examination of the scans is carried out by trained physicians. How-
ever, generating automated detections of anomalies could help to
improve radiological studies and expedite the overall segmentation
process. Automatic segmentation of these lesions has attracted the
medical image analysis community and exceptional results have
been accomplished with recent deep learning approaches, inter alia
thanks to public challenges such as the Multi-modal Brain Tumor
Segmentation (BraTS) or the Ischemic Stroke Lesion Segmenta-
tion (ISLES). However, most recent approaches with deep learning
are supervised methods which require a vast amount of annotated
data. Creating these annotations is a time-consuming task which
can only be done by trained physicians. Simultaneously, large sets
of unannotated MR data are available at hospitals, a yet untapped
data source for deep learning.

By introducing unsupervised learning methods, the limitation of
missing annotations or the lack of available medical experts can
be overcome, and the existing data can be directly used. Recent
approaches for unsupervised anomaly detection in brain MRI es-
tablished a basis for detecting lesion contours. These unsupervised
deep learning methods mostly rely on the use of variational au-
toencoders (VAEs) and generative adversarial networks (GANSs).
As healthy adult brains show similar structures, these architectures
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Figure 1: MR imaging sequences. (a) T1-weighted image with con-
trast medium, (b) FLAIR image, (c) groundtruth labels.

are trained on healthy brains only in order to learn their anatomy.
Deviations from the norm, i.e., lesions, are then detected as they do
not follow the learned structures.

However, it is so far not possible to find and simultaneously iden-
tify the nature of outliers without training samples. By not only de-
tecting lesions, but by further identifying the specific tissue types
as shown in Figure 1, further clinical decision making is possible.
The BraTS data set, which contains MRI scans of brain tumor pa-
tients, is suitable for this task, as different areas of the brain tumors
need to be distinguished.

State-of-the-art anomaly detection architectures like VAEs and
GANSs build the basis of this work and are integrated in our model
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for the task of unsupervised multi-modal brain tumor semantic seg-
mentation. The main contributions of this paper are:

e A comparison of different unsupervised deep learning tech-
niques for anomaly detection in brain MRI scans.

e A new method built on anomaly detection techniques that in-
corporates medical knowledge in order to semantically segment
different brain tumor areas without any training labels.

2. Related Work

In the last years, several papers on brain tumor segmentation in a
supervised deep learning setting have been published. The BraTS
challenge [MJBeil5] provides a good overview and performance
comparison of these approaches [BReIM18].

Concerning unsupervised lesion detection in MRI scans, several
deep learning methods were also introduced in the last years. Baur
et al. [BWAN19] examined different architectures of autoencoders
and GANSs. A combination of a spatial VAE and a GAN showed the
best results on their in-house datasets of FLAIR and T1-weighted
images of MS lesions. Finally, a dice score of up to 0.6 was reached.
Chen and Konukoglu [CK18] implemented a ResNet based con-
strained adversarial autoencoders, on which a constriction to the la-
tent space was added. Training on the Human Connectome Project,
and testing on T2-weighted BRATS data, they reached AUC values
for tumor segmentation between 0.897 and 0.923. Dice scores were
not presented. Atlason et al. [ALS*19] used a convolutional autoen-
coder for segmentation of age-related lesions caused by ischemia or
demyelination on T1, T2, and FLAIR MRI images, reaching dices
score of up to 0.76. Zimmerer et al. [ZKP* 18] added a new aspect
to anomaly detection in brain MRI by combining a context encod-
ing denoising autoencoder with a VAE. The networks were trained
on the T2-weighted images of the HCP dataset and then tested on
the BraTS and ISLES datasets. On the BraTS dataset, a dice score
of 0.51 and an AUC value of 0.95 was reached for whole tumor
segmentation.

3. Data

The BraTS2018 training dataset is used for training, validation and
testing of the network. It consists of 285 patients from multiple in-
stitutions and is further divided into into 75 low-grade (LGG) and
210 high-grade (HGG) glioma. For each patient the T1, T1CE, T2
and FLAIR sequences as well as a segmentation map are avail-
able. The data shows a high variability between patients, as differ-
ent scanners with varying degrees of quality are used. The origi-
nal data was resampled to an isotropic resolution of 1 mm?, with
240 x 240 x 150 voxels. We crop this to 180 x 180 x 70 voxels
to get rid of excessive background and the brain stem. Finally, the
data is scaled down to 128 x 128 x 70 voxels, z-score normalized
and subdivided into training and test set. The test set consists of 30
(20 HGG and 10 LGG) randomly chosen subjects, that remained
completely unseen during network training, optimization and val-
idation. During training, for each sample one augmented sample
was created by randomly flipping, scaling, shearing or slightly ro-
tating the sample. On top, for a stronger disturbance of the images,
square patches of random size between 15 and 50 pixels were ran-
domly added to the input images. In these patches, the original data

was suppressed by Gaussian noise to make the autoencoder robust
against deviations of the brain structure. This attempts to simulate
disturbances that are later caused by the tumor.

4. Methods

First, VAEs, GANs, and combinations thereof are trained on 2D
healthy MRI brain images to learn the composition and structure
of a healthy brain. To ensure that only healthy structures are learnt,
only slices without tumor annotations in the ground truth are used
for training. Feeding unknown, anomalous data to the network then
causes a desired failure: The network recreates healthy brain struc-
tures in de facto cancerous areas. Calculating the residual between
input and output finally reveals anomalies.

The whole tumor contour seems to be best represented in the
FLAIR image, and the enhancing tumor area is specifically high-
lighted in the T1CE image. Thus, as these two imaging sequences
provide the best contrast for these areas, the anomaly detection
models are trained on these acquisitions. After successful train-
ing, the network is tuned to recreate TICE and FLAIR images of
a healthy brain that are similar to its input. However, the network
does not simply copy the input, but learns to recognize important
features of healthy brain structures.

In most cases, the edema is the most visible part of the tumor and
lies exterior to the tumor core. Since this is best seen in FLAIR se-
quences, tumor contour segmentation is based on FLAIR residuals.
Based on the residuals, a neighborhood-weighted Gaussian mix-
ture models is used for segmentation. This returns a binary mask,
of which the smallest of the two clusters is chosen and smoothened
by morphological operations. Using the T1CE residual in the same
way as the FLAIR residual, the enhancing region can be detected.

The instructions for manual segmentations to be followed by
medical staff given by the BraTS organizers [BAS*17] gives an ori-
entation on how the different areas can finally be detected. Specifi-
cally, the enhancing tumor core mostly encloses the necrotic tissue.
Thus, using the convex hull around the enhancing core, an approx-
imation of the non-enhancing and necrotic core of the glioma can
be found.

4.1. Network architectures

Autoencoder are a special type of neural networks, and a promis-
ing approach for unsupervised learning [GBC16]. They consist of
two parts building a simple encoder-decoder structure. The encoder
translates the input information to a hidden layer often called la-
tent space, which is significantly smaller than the input data. The
decoder’s task is to reconstruct the output from latent space z to re-
semble the input. The main idea behind this model is not to simply
copy input to output, but to perform training in a way that the latent
space holds indicative and conclusive information about the input.

VAEs and GANSs represent further development of deep learning
architectures for unsupervised learning tasks. VAEs follow the ar-
chitecture of autoencoders, but the latent space z is sampled instead
of being forwarded in a deterministic manner [KW13]. However,
VAEs tend to create slightly blurred images which cause undesired
differences in the residual.
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In contrast, GANs are known to create highly defined outputs.
A combination of both network types can lead to sharper outputs
and improvements in performance [LSW15], as was also shown for
brain lesions by Baur et al. [BWAN19]. GANSs consist of two parts:
a generator and a discriminator. The guiding idea is a constant com-
petition between the generator and the discriminator (see Figure 2).
While the generator creates fake images similar to the real input,
the discriminator serves as a controlling instance and tries to iden-
tify counterfeit inputs. A forger and an inspector work against each
other in steady competition until counterfeit and real data are indis-
tinguishable [GPAM* 14]. In case of adversarial autoencoders, the
discriminator takes the original image and the reconstruction of the
VAE as input and learns to recognize the reconstruction. Finally, as
feedback on how good the reconstruction is, an adversarial loss is
handed to the VAE.

real

sample gradient of log D(x) + log(1 — D(G(z)))

Discriminator s loss

fake

Generator sample

gradient of —log D(G(z))

Figure 2: Layout of generative adversarial networks.

For image data, either dense networks or convolutional archi-
tectures can be utilized. Since Baur et al. [BWAN19] have shown
that convolutional architectures are much more suited for the task
of anomaly detection in MRI brain scans than dense networks, all
presented networks use fully convolutional architectures.

The different autoencoders implemented and tested are denoted
as follows: ¢VAE describes a common fully convolutional autoen-
coder adapted to the specific data shape, dVAE an autoencoder with
dilated convolutional filters, and VAEIpx an autoencoder with a
very small latent space (1 pixel with 64 channels). Details of these
architectures are revealed in Table 1. Our adversarial variational au-
toencoder AAE, uses the cVAE as autoencoder, and the architecture
described in Table 1 as discriminator.

Finally, we also evaluate a bidirectional adversarial autoencoder
BiAAE, which takes the latent space into account. While the ad-
versarial autoencoder only compares the input scan and the recon-
struction, the BiAAE also considers differences in the latent space
and therefore forces the autoencoder to assimilate even further to
the input images. The discriminator of the BIAAE has two inputs:
one for the input scan and the encoder output, the second for the
reconstructed image and the input of the decoder. The discrimina-
tor architecture differs only slightly compared to the AAE. The 6
layers of the AAE discriminator are assumed for the first input, the
image/reconstruction. The structure only changes in the last lay-
ers, where the output increases from 64 to 128 channels. The latent
space input is handled by a second smaller structure with only two
convolutional blocks with 128 feature maps and 4x4 kernels. Those
two networks fuse into a third network that consists of three 1x1
convolutional blocks.
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Table 1: Encoder and latent space architecture. In the encoder,
conv designates a convolutional block consisting of one convolu-
tional layer, batch-norm normalization and LeakyReLU activation
Sfunction. The conv-layer is denoted as "conv(receptive field size),
(stride), {(dilation)-(number of channels). The decoder is directly
transposed to this architecture, using fractionally strided convolu-
tional layers. The two layers of the latent space describe u(X) and
303 (X). No normalization or activation functions are used here.

AAE/BiAAE-
VAE dVAE VAElpx Discriminator
Encoder
conv4, 2,1-16 convé6, 1,1-8 conv4, 2,1-16 conv4, 2,1-16
conv4, 2,1-32 convs, 2,2-16 conv4, 2,1-32 conv4, 2,1-32
conv4, 2,1-64 conv6, 1,2-16 conv4, 2,1-64 conv4, 2,1-64
conv4, 2,1-64 convs, 3,2-16 conv4, 2,1-64 conv4, 2,1-64
conv4, 2,1-64
conv4, 2,1-64
Latent space
conv3, 2,1-64 conv3, 1,1-16 convs, 1,1-64
conv3, 2,1-64 conv3, 1,1-16 convs, 1,1-64

We also include the architecture proposed by Zimmerer et
al. [ZKP*18] by adding a context-encoding autoencoder to the
VAE. This architecture is designated as VAE-CE in the following.

4.2. Anomaly score

During training, the network constantly provides information on
the features of the input with the mean and standard deviation in-
side the latent space. As the network is trained only on healthy brain
structures, the means and standard deviations should correlate to
healthy brains - cancerous inputs should show up as outliers. Thus,
the mean and variance of the latent space are saved during training.
During prediction, the latent representation of the new data can be
compared to the stored latent space of healthy examples with the
Mahalanobis distance. If the deviation is higher than two times the
standard deviation of the Mahalanobis distance, the sample is clas-
sified as pathological.

As a second possibility, the mean and variance of the residuals
can serve straightforwardly as an anomaly score, as they should be
close to zero for brain slices similar to those seen during training.
In contrast, the mean of the residual should be significantly lower
for scans with brain tumors, as these show up as negative values
in the residual. Thus, similarly to the Mahalanobis distance based
latent space classification, a maximum threshold can be determined
based on exemplary healthy slices.

4.3. Postprocessing

The number of components in the residual brain images is expected
to be two: healthy brain mass and tumor. The clusters are calcu-
lated with an expectation maximization approach. Since the tumor
is never bigger than the actual brain, the smallest of the two cluster
is selected as tumor. As it is very plausible to make assumptions
about the surrounding tissue if a first hypothesis is already given, a
Gaussian mixture model with a neighborhood-based weight is in-
troduced, as in [TDLOS]. The neighborhood weighted probability
can be calculated as follows:
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scribed by N, and x;,; indicates the nth neighbor’s pixel value. This
weighted probability can be used inside the expectation maximiza-
tion of a Gaussian mixture model instead of the unweighted proba-
bility.
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Subsequently, morphological operations help to improve results
by removing small pixel groups from the segmentation masks. One
binary opening operation removes small groups of false positives,
and one binary closing removes small holes in the segmentation
mask.

An overview over the postprocessing, with which we obtain the
different areas, can be seen in Figure 3.

Residual Morphologic
images adaptations

Biggest
hull blob

S &

Figure 3: Segmentation pipeline for tumor regions.

Convex

5. Results

The final reconstructions of the network as well as the obtained seg-
mentation masks are obtained during the prediction process. The
quality of the segmentations masks is contrasted in the following.
The different architectures and loss functions are compared against
each other. A visual impression of the results is given in Figure 4.

5.1. Segmentation without anomaly score

To compare the segmentation results of the different architectures,
we first evaluate the results before applying the anomaly score. This
means that a slice without pathogenic structures will have a dice
score of zero. Thus, the overall dice score is significantly worse
than for the final results. However, this approach allows a fair com-
parison of different architectures.

The results for the tumor outline segmentation are provided next
to the semantic segmentation results with the Gaussian Mixture
Model, so that this metric can be compared to the previously pub-
lished approaches. All segmentations are created using the net-
work with the lowest validation loss, that was chosen after train-
ing reached convergence. The complete results are presented in Ta-
ble 2 for MSE and SSIM loss functions. The best value per loss
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Figure 4: Segmentation masks for exemplary segmentation results.
(a) Flair input scan. (b) TICE input scan. (c) Flair residual. (d)
TICE residual. (e) Ground truth. (f) Segmentation mask.

for both outline segmentation and semantic segmentation is empha-
sized in the table. The SSIM loss achieves overall the best results.
L1 loss functions were also tested but resulted in slightly worse
results compared to the MSE loss functions.

Table 2: Dice scores for all models using MSE loss and SSIM loss
Sfunction

Model: ~ Tumor outline Semantic seg.

Loss: MSE SSIM MSE SSIM

VAE 0.377 0409 0.232 0.253
dVAE 0379 0410 0.234  0.260
VAElpx 0371 0350 0221 0.201
VAECE 0.383 0408 0.236 0.260
AAE 0.377 0370 0.231 0.216
BiAAE 0.383  0.407 0.235 0.248

The best settings reach dice score of 0.26 for the semantic seg-
mentation before application of the anomaly score. This is achieved
with VAEs using the SSIM loss function but without added GAN-
loss.

Compared to the existing methods explained in Section 4.1, the
dilated VAE shows a similar, or even slightly better performance as
the VAE in combination with a denoising autoencoder proposed
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by [ZKP*18]. All further results are demonstrated with this di-
lated convolutional autoencoder architecture in combination with
the SSIM loss function.

5.2. Anomaly scores

By adding an anomaly score, it is compensated that the segmenta-
tion methods cannot handle cases in which no tumor is present. As
explained in Section 4, two different anomaly scores are evaluated:
Information based on the latent space, and information based on
the mean residual. In Table 3, it can be seen that while the mean
residual is good indicator of pathological slides with a ROC-AUC
of 0.835, the latent space information provides a significantly lower
ROC-AUC. Thus, the mean residual method is chosen for further
experiments.

Table 3: ROC-AUC: How well different anomaly scores predict
pathological slices

Anomaly score AUC
Mean residual 0.835
Latent space 0.471

5.3. Overall results

In combination, the best network (dVAE) and the anomaly score
reach the following accuracies on the held-out test dataset: Whole
tumor: 0.64, tumor core: 0.61, and enhancing tumor: 0.62. In com-
parison, with a fully supervised setting in the BraTS challenge
2018, the top teams reached average dice scores between 0.75 and
0.9. [BReIM18].

6. Discussion

It was demonstrated that unsupervised learning methods are capa-
ble of segmenting different radiological areas in brain tumors when
incorporating medical knowledge, and the presented segmentation
algorithm proved to be a suited choice for segmenting the three ar-
eas of the tumor. Critically examined must be the decision to choose
the biggest blob during segmentation as well the assumption that
three classes should always be distinguished. Not every tumor ac-
tually exhibits all mentioned areas, and there may be more than a
single brain tumor. Especially in brain tumors without contrast en-
hancing tissue, our model reaches its limits. Further development
is needed to adjust this model to more complex cases, and to reach
the accuracy that state-of-the art supervised models offer.

Nevertheless, with FLAIR and T1CE images as input, a distinc-
tion between edema, tumor core and enhancing tumor was pos-
sible without any training labels. It was shown that it is possi-
ble to achieve good segmentation results by using unsupervised
deep learning methods in combination with prior medical knowl-
edge. Such models offer big advantages over fully supervised deep
learning methods: First of all, they do not rely on vast annotated
databases. Second, as they fail to reconstruct pathological data, and
with medical knowledge incorporated in the postprocessing part,
they are better explainable than straightforward supervised deep
learning approaches.
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7. Conclusion

This paper proposes an unsupervised semantic segmentation
method for gliomas in brain MRI. Without using any labels, we de-
vised a model that can identifying the three different tumor tissue
classes as used in the BraTS dataset. The model includes state-of-
the-art variational autoencoders and GANS to create a reconstruc-
tion of healthy tissue that fails on pathological tissue. While our
model produces good results, it currently implements a simplified
version of the complex nature of brain tumors. For future advances,
the model incorporating medical knowledge into the segmentation
process needs to be refined.
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