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Abstract
Four-dimensional phase-contrast magnetic resonance imaging (4D PC-MRI) is a method to non-invasively acquire in-vivo
blood flow, e.g. in the aorta. It produces three-dimensional, time-resolved datasets containing both flow speed and direction
for each voxel. In order to perform qualitative and quantitative data analysis on these datasets, a vessel segmentation is often
required. These segmentations are mostly performed manually or semi-automatically, based on three-dimensional intensity
images containing the maximal flow speed over all time steps. To allow for a faster segmentation, we propose a method that, in
addition to intensity, incorporates the flow trajectories into the segmentation process.
This is accomplished by extracting Lagrangian Coherent Structures (LCS) from the flow data, which indicate physical bound-
aries in a dynamical system. To approximate LCS in our discrete images, we employ Finite Time Lyapunov Exponent (FTLE)
fields to quantify the rate of separation of neighboring flow trajectories. LCS appear as ridges or valleys in FTLE images,
indicating the presence of either a flow structure boundary or physical boundary. We will show that the process of segmenting
low-contrast 4D PC-MRI datasets can be simplified by using the generated FLTE data in combination with intensity images.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Filtering—FTLE

1. Introduction

Various cardiovascular pathologies have been related to changes
in blood flow patterns [HSD13]. To gain a better understanding of
these pathologies, analyzing their respective patterns is vital. With
four-dimensional phase-contrast magnetic resonance imaging (4D
PC-MRI), it is possible to non-invasively obtain patient-specific
blood flow data. A segmentation of the datasets is often needed
to find seeding points for pathlines and quantify various measures,
such as stroke volumes and regurgitation fractions [KPG∗16b].

Commonly, segmentations are carried out manually or semi-
automatically based on the dataset’s magnitude values, e.g. using
the temporal maximum intensity projection (TMIP), which depicts
the maximum flow speed over all time steps [KBP∗15]. Meth-
ods range from simple thresholding [BKPP16] to more sophis-
ticated methods like Active Contours [KULD08] or Graph Cuts
[KPG∗16a]. A purely TMIP-based approach is sufficient for im-
ages with good overall contrast, (Fig. 1(a)), but becomes cumber-
some on datasets with lower contrast (Fig. 1(b) and (c)). Since in
such cases the differences in local contrast make the TMIP images
unsuitable to base a segmentation on, we propose the additional us-
age of directional information. Flow inside of a blood vessel gen-
erally follows the vessel’s course, while movement perceived out-
side consists mostly of random noise. Therefore, the presence of a
general flow direction distinguishes the vessel anatomy from their

surroundings. This distinction can provide additional valuable in-
formation for segmentation purposes.

A way of quantifying this distinction is the Finite Time Lya-
punov Exponent (FTLE) [Hal02], which is a measure of the rate
of separation of infinitesimally close trajectories in a specified time
frame of a dynamic system. The lack of coherent flow outside of
the anatomy results in a high rate of separation in the direct vicin-
ity of the vessel boundary, as this is where directed flow borders
on random motion. Therefore, areas of high intensity in an FTLE
image can be interpreted as an approximation of the vessel bound-
ary [KGG∗12].

This paper presents an algorithm which incorporates directional
coherency information through the use of FTLE fields in addition to
TMIP-based images. We will show that the segmentation process
can be significantly sped up in comparison to classical methods
based solely on magnitude.

2. Related Work

In this section, we will give an overview of the use of FTLE in flow
data to identify structures and briefly discuss alternative methods
of using directional information for segmentation purposes.

An example for a different flow coherency measure is the Local
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Figure 1: Comparison of TMIP image slices showing the aorta with
different contrast levels. The first image can easily be segmented
on image intensity alone; the second and third one suffer from low
contrast in the aortic arch and descending aorta.

Phase Coherence (LPC), as proposed by Chung et al. [CNS04]. It
is defined as the sum of dot products of a voxel’s flow vector with
those of the adjacent vectors, so coherent flow in a blood vessel
generates higher LPC values than the surrounding random noise. In
studies with clinical data, Chung et al. proved that the use of LPC
for segmentation is less error-prone when there is a low signal-to-
noise ratio (SNR). However, on datasets with high SNR, segmenta-
tions on magnitude images outperformed those on LPC images.

The LPC only takes into consideration the flow of single time
steps and is therefore susceptible to noise. This can be partly reme-
died by averaging LPCs over all time steps. FTLEs, on the other
hand, incorporate flow information over multiple time steps. A gen-
eral approach to visualize complex structures from arbitrary flow
fields using FLTEs was presented by Ferstl et al. [FBTW10]. They
simulated flow around simple, geometric obstacles and employed
the ridges of FTLE fields as seeding points for streak surfaces.

Van Leeuwen used FTLE fields as basis for clustering intra-
cardiac blood flow acquired using 4D PC-MRI [vL14]. This was
done to focus the complex visualization on important flow struc-
tures by partitioning the presented information and removing vi-
sual clutter. Instead of focusing on inset flow structures, Krishnan
et al. introduced an algorithm for boundary detection of an entire
vessel, albeit not for the purpose of segmentation [KGG∗12]. They
used high FTLE values as a stopping criteria for their pathline in-
tegration in order to prevent them from leaking out of the vessel
anatomy. However, the absence of an actual segmentation requires
manual placing of seed points and prevents native support for visu-
alizing parameters of the aortic wall, such as wall shear stress.

3. Background

Four-dimensional phase-contrast magnetic resonance imaging (4D
PC-MRI) is an imaging modality that allows for a non-invasive ac-
quisition of three-dimensional time-resolved blood flow data from
a patient. This information helps finding correlations between var-
ious pathologies and changes in blood flow patterns, allowing for a
better understanding of cardiovascular diseases.

3.1. Data Acquisition and Preprocessing

Data acquired using 4D PC-MRI consists of 3 flow images repre-
senting direction and 3 magnitude images representing speed for
each slice and time step. From these images, a four-dimensional
velocity vector field can be constructed.

The acquisition requires a velocity encoding parameter (Venc),
denoting the highest expected velocity for each direction
[SAG∗14]. If the actual flow velocity exceeds the preset Venc, it
flips and therefore appears to be moving in the opposite direction.
These artifacts are called phase wraps and appear either as white
areas surrounded by black or black areas surrounded by white in
the resulting datasets.

Using a high Venc, on the other hand, lowers the overall image
contrast and therefore increases the difficulty of segmenting the
anatomy. A similar problem can occur if the vessel simultaneously
has areas of very high (e.g. inflow jets) and low (e.g. parts of the
aortic arch) flow speed, which is often the case in clinically inter-
esting pathologic datasets. Here, the Venc has to be increased in or-
der to prevent phase wrapping artifacts in certain regions, therefore
lowering contrast in others (Fig. 1(b) and (c)). Thus, low quality
data is not a matter of wrong adjustments of inexperienced users.

3.2. Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCS) are trajectory structures in a
dynamical system that indicate the presence of physical boundaries
or other major influences on the flow [SLM05]. These structures
can be approximated by calculating the Finite Time Lyapunov Ex-
ponent (FTLE) of every voxel in a dataset. In the resulting FTLE
field, LCS appear as ridges.

The base for an FTLE field calculation is the dataset’s flow map
Φ

t+δt
t (v) [SDM06]. It maps each voxel v = (x,y,z) in the four-

dimensional dataset to the position, a massless particle integrated
from v at time step t would have at the time point t + δt. Parame-
ters of this process are step size, integration time δt and integration
method. The step size controls the number of sampling points for
the integration process. Increasing the step size can increase the
calculation speed at the cost of accuracy. The optimal integration
time varies with each dataset, as it is dependent on variables like
overall flow speed and turbulences [vL14].

In areas with coherent flow, neighboring voxels in the flow map
should reach a similar final integration position. Due to the coherent
flow of the vessel in contrast to the random noise outside, the aorta’s
shape is clearly distinct in this image.

J(v, t,δt) =∇Φ
t+δt
t (v) (1)

λ(v, t,δt) =
√

λmax(J(v, t,δt)T J(v, t,δt)) (2)

FT LE(v, t,δt) =
1
|δt| log(λ(v, t,δt)) (3)

To obtain the actual FTLE value of each voxel v at time t (Eq.
3), its spatial gradient or Jacobian J(v, t,δt) is needed [KGG∗12]. It
represents the separation of flow around v in all directions and can
be quantified as a single, scalar value by calculating its Euclidean
or Spectral norm. λmax in Eq. 2 is the maximum eigenvalue of the
matrix JT J. The logarithm in Eq. 3 is applied to account for the ex-
ponential growth of this term. Additionally, its numerical stability
towards changes of the integration time δt is increased by perform-
ing a normalization [KGG∗12].
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4. Segmentation of Vessel Boundaries

Most applications for the quantification of four-dimensional car-
diac blood flow require a segmentation of the vessel anatomy.
While the segmentation can be mostly automated on datasets with
good overall contrast [BKPP16], manually segmenting lower qual-
ity images is often cumbersome. Hennemuth et al. proposed the
use of an interactive watershed transformation for image segmen-
tation [HFS∗11], using include and exclude markers in regions sep-
arated by watersheds to generate a segmentation. A similar segmen-
tation input is used by interactive graph cuts, introduced by Boykov
et al. [BJ01]. They employ both soft constraints based, for instance,
on intensity and gradients, as well as hard constraints. The latter
are regions manually marked by the user as either being part of the
fore- or background. Images are interpreted as a graph, whereas
neighboring pixels are connected via an edge that is weighted ac-
cording to the soft constraints. By finding a cut of the graph, where
the manually marked pixels are completely separated and costs of
the cut edges are minimal, a segmentation can be achieved.

This approach offers users a fast, intuitive and stable way of seg-
menting the datasets. Physicians only need to apply their knowl-
edge of the anatomy during the segmentation process, instead of
having to adjust abstract parameters. Since vessel boundaries are
naturally indicated by changes in the magnitude image intensity,
their gradients usually are a suitable choice as soft constraints for
weighting the edges. On images containing gradients of highly
varying intensity due to local contrast differences, this most likely
results in an unsatisfactory segmentation. In this paper, we will
show that improving the soft constraint by adding information de-
rived from flow images reduces the amount of interaction required
by the user on low-contrast datasets.

4.1. Clinical Data

In order to test our approach, we used four clinical datasets show-
ing the aorta and pulmonary artery of healthy volunteers as well as
patients with different pathologies. Each dataset consists of six im-
ages with a grid resolution of 132× 192× 15 - 26 for each of their
11 to 23 time steps, containing flow direction and magnitude in x,
y and z direction. From the magnitude data, a temporal maximum
intensity projection (TMIP) was created. The flow data was used
to create a temporal standard deviation image (STDEV) [WCS∗93]
and a finite time Lyapunov exponent image (FTLE). To approxi-
mate the flow trajectory during the flow map calculation, we are
using the 4th-order Runge-Kutta integration (RK4), with a step size
of 1, which offers an acceptable compromise between accuracy and
speed. Due to the absence of a heuristic to determine the optimal in-
tegration time before actually performing the integration, we opted
for a fixed value of 20% of the dataset’s overall time frame (100
- 120 ms). Since we are interested in the ridges of the FTLE im-
age, a normalization above the 80% quantile was applied (Fig. 2(a)
and (b)). To increase the contrast in our FTLE images, a TMIP was
applied. As a measurement of flow separation, FTLEs are strongly
dependent on the time frame they are generated over (defined by t
and δt), so there is no need to calculate them over time frames with-
out significant flow. Therefore, the diastolic phase can be skipped
during FTLE calculation (Fig. 2(c)).

Figure 2: FTLE slice generated for a time frame over the systole
with (b) and without (a) normalization above the 80% quantile, di-
astolic FTLE frame with normalization (c).

Figure 3: Slices from the input and output data; TMIP gradient (a),
FTLE (b) and STDEV (c) input images. The last two images show
the result with (e) and (d) including the STDEV image. The red ar-
row highlights an area, where including the STDEV reduces noise.

4.2. Vessel Boundary Enhancement

In addition to boundaries, certain inset flow structures can also
cause high FTLE values. For instance, strong vortices or inflow
jets can sometimes be hard to differentiate from the actual vessel
boundaries (Fig. 3(b)). Also, FTLE images are sensitive to noise,
which is likely to appear in air-filled areas. In order to increase the
robustness of our approach against such structures, we use addi-
tional information from the TMIP and flow data to reduce or elim-
inate their effects.

Although the gradient of the TMIP images alone may not be suf-
ficient to detect vessel boundaries (Fig. 3(a)), it can still help to
rule out unwanted boundaries detected in the FTLE image. By nor-
malizing both the TMIP gradient and FTLE image to an intensity
range of 0 to 1 and multiplying them, we can enhance the con-
trast of the actual vessel boundary. In both the gradient and FTLE
image, the actual boundary should have comparatively high val-
ues, while most inset flow structures are only visible in the FTLE
image. This creates an image with high intensities on the vessel
boundaries, but also a high amount of noise, especially in the lung
(Fig. 3(d)). As proposed by Walker et al., we generated the STDEV
image by adding up the flow’s temporal standard deviation over all
time steps for each voxel to remove these artifacts [WCS∗93]. Ar-
eas with an exceptionally high standard deviation are most likely
to be air-filled regions and therefore cannot be part of the vessel
anatomy (Fig. 3(c)). They can therefore be filtered out by multiply-
ing our image with the inverse of a normalized STDEV image. In
the resulting image, which we will reference as Enhanced FTLE
(EFTLE), vessel boundaries are clearly visible with minimal noise
(Fig. 3(e)).

After acquiring and preprocessing the dataset, our application
generates the necessary derived images like TMIP and flow map
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Figure 4: Datasets segmented by our expert radiol-
ogist; ISTA_12_2012 (a), Flow_DS_3_2014 (b),
Flow_DS_6_2014 (c), Flow_DS_9_2014 (d).

using parallel processing on the GPU. Generating the flow map
takes the most time, as it requires to integrate the flow for each
voxel in every time step. The actual segmentation is performed us-
ing the 3D graph cut implementation GridCut, with edge weights
specified by the function e−α·||∇I||2 . I is the image intensity and α

a tolerance parameter with an experimentally determined value of
1000 [KPG∗16a]. The user has to manually classify small regions
using a paint brush tool as belonging to either the vessel anatomy
(green) or background (red) [KPG∗16a]. At any time, the user can
generate the 3D surface mesh from the segmentation to identify and
correct regions with segmentation errors.

5. Evaluation

To evaluate our method, we asked an expert radiologist to use it as a
base to segment four datasets (Fig. 4), which were selected as rep-
resentations of different contrast levels. The radiologist segmented
all datasets twice, once based on TMIP and once on EFTLE images.
To objectively evaluate our approach against classical methods, we
compared both required input for and resulting vessel model from
both segmentations.

The quantification of user input consists of counting how many
voxels the radiologist had to manually color in order to reach a
satisfying segmentation. In order to make the results comparable
between different datasets with varying resolutions and vessel vol-
umes, we calculated the ratio of manually segmented voxels in
TMIP and EFTLE images. To ascertain that the user input for seg-
menting the EFTLE images would not also generate a good seg-
mentation on a TMIP, the input for both EFTLE- and TMIP-based
segmentations was then reapplied to the other image. We also ap-
plied EFTLE-based input to LPC images and compared the result-
ing segmentations to evaluate our method against the Local Phase
Coherency (LPC) by Chung et al.

6. Results

All preprocessing tasks were performed before the radiologist
started segmenting the images. On a Geforce GTX980, generating a
flow map without the diastolic time frame took around 1 to 3 min.,
depending on the dataset dimensions. During an informal interview,
the radiologist expressed that especially for the datasets with poor

Figure 5: A slice rendered as TMIP (a), EFTLE (b) and LPC (c).

Figure 6: Vessel mesh extracted from the segmentation of
Flow_DS_6_2014 (a, b) and Flow_DS_3_2014 (c, d); the ves-
sels generated from a magnitude-based segmentation (a, c) cover
less of the anatomy than those generated from our method (b, d).

contrast, EFTLE images were much easier to segment because the
anatomy was much clearer to see (Fig. 5(b)). The TMIP-based seg-
mentation of the dataset in Fig. 6(a) is missing parts of the de-
scending aorta that were not sufficiently visible in the magnitude
images. In Fig. 6(c), the radiologist was unable to segment parts
of the ascending aorta around the left ventricle. Both of these areas
were made possible to segment using EFTLE images (Fig. 6(b) and
(d)). Additionally, Fig. 6(d) shows a better segmentation of the ves-
sels branching from the aortic arch, which are important landmarks
in many applications. A reoccurring problem with segmenting EF-
TLE images is that the segmentation can leak from the aorta onto
the pulmonary artery, since the graph cut has problems separating
them in some areas. On the low-contrast datasets, however, the ef-
fort to manually correct these errors was significantly lower than
the effort to create a magnitude-based segmentation.

Fig. 7 shows an overview of the ratio of foreground, background
and overall manual segmentations. Due to the lack of a gold stan-
dard for the segmentations, we did not compute similarity measures
such as the DICE coefficient. The two images with better contrast
exhibit higher ratios, showing that our method was less efficient
on them. Due to the aforementioned leaking of the segmentation
into the pulmonary artery, ISTA_12_2012 has an exceptionally
high ratio for manually marked background voxels. On images with
lower contrast levels, our approach performs significantly better, as
it reduces the amount of required manual input by 22 to 32 percent.

Additionally, we applied the segmentation input for EFTLE im-
ages to TMIP images and in reverse. On datasets with better con-
trast, exchanging the input produced mostly valid segmentations
in both cases. Applying the EFTLE input to TMIP images gener-
ally causes smaller areas to disappear from the resulting segmen-
tation. In the reverse case, additional undesired areas belonging to
the pulmonary artery become visible. The same things happen on
the datasets with lower quality, although the effects are strongly
increased. Applying the EFTLE input to TMIP images fails to pro-
duce a valid segmentation, because there is too little input for the
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Figure 7: Ratios of manual segmentation input by our expert radi-
ologist

Figure 8: Comparison between LPC- and EFTLE-based segmenta-
tions (yellow outline) using the same input; Red circles in the LPC
images (b, d) indicate areas with incomplete segmentation com-
pared to EFTLE images (a, c).

graph cut to work with. This had to be solved by marking addi-
tional voxels as background, which still results in an unsatisfactory
segmentation. Applying EFTLE input to LPC images produced a
seemingly valid segmentation for all four datasets. On closer in-
spection, however, the vessel segmentation turned out to be incom-
plete. The graph cut algorithm fails to automatically include many
voxels near the vessel boundary, likely due to generally lower SNR
of LPC images (Fig. 8).

7. Conclusion and Future Work

In this paper, we presented a method to aid the segmentation of
vessels in low-contrast cardiac 4D PC-MRI datasets. This was
achieved by combining magnitude-based images with flow co-
herency information extracted from FTLE fields. Although we only
tested it with cardiac 4D PC-MRI data, our method should be easily
adaptable for other regions of the human body, as long as the ves-
sels are large enough to be visible through 4D PC-MRI. Similarly
to LPC, the resulting EFTLE images allow for a segmentation of
the vessel even in areas with magnitude contrast or low signal-to-
noise ratio. With the help of an expert radiologist we were able to
confirm that our approach requires less input to generate a satisfy-
ing segmentation than an LPC-based method. While our approach
works better on low-quality images, using the TMIP as a base for
segmentation was preferable on high-contrast datasets. Therefore
users should be able to switch between these two options, depend-
ing on the quality of their datasets. This may be remedied by a more
detailed exploration of the algorithm’s parameter space, namely the
step size, integration time and scale of the FTLE image. Further
studies need to be conducted in order to find a heuristic for deter-
mining optimal parameters for each dataset.
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