
STAG: Smart Tools & Apps for Graphics (2015)
Silvia Biasotti and Marco Tarini and Andrea Giachetti (Editors)

Skeleton Lab: an Interactive Tool to Create,
Edit, and Repair Curve-Skeletons

S. Barbieri, P. Meloni, F. Usai and R. Scateni

Department of Mathematics and Computer Science, University of Cagliari, Italy

Abstract
Curve-skeletons are well known shape descriptors, able to encode topological and structural information of a
shape. The range of applications in which they are used comprises, to name a few, computer animation, shape
matching, modelling and remeshing. Different tools for automatically extracting the curve-skeleton for a given
input mesh are currently available, as well as inverse skeletonization tools, where a user-defined skeleton is taken
as input in order to build a mesh that reflects the encoded structure. Although their use is broad, an automatically
extracted curve-skeleton is usually not well-suited for the next pipeline step in which they will be used. We present
a tool for creating, editing and repairing curve-skeletons whose aim is to allow users to obtain, within minutes,
curve-skeletons that are tailored for their specific task.

1. Introduction

A curve-skeleton is a compact mono-dimensional represen-
tation able to encode meaningful information about both
volume and topology of a shape. While the skeleton of a
two dimensional shape is defined as its Medial Axis Trans-
form [Blu67], which is the locus of centres of its maximal
inscribed discs, this definition leads, for three dimensional
shapes, to a collection of connected curves and sheets that
are impractical to use in real world applications.

Constraining the skeleton of a 3D shape to be a one-
dimensional structure results in a simpler and more intuitive
representation, that is also easy and natural to manipulate.
As of today, however, there is no unique, precise and univer-
sally accepted definition of curve-skeletons, hence different
approaches for its computation have been proposed, each
obtaining results with different features, characteristics and
defects [Tag13].

The range of applications in which curve-skeletons are
used is wide and comprises computer animation [BP07] ,
shape matching [HSKK01], modelling [BAS14], remeshing
and quad layout extraction [ULP∗ss], polycube [LZLW15]
and hexahedral mesh construction [ZBG∗07]. Since each of
these applications requires skeletons with different properties,
further processing is often required in order to obtain optimal
results in the pipeline in which they will be used. Moreover
it is often difficult to define algorithms to process a skeletal

structure in order to reflect the required features, due to the
semantic nature of the information it conveys.

Tools for interactive creation of curve-skeletons already
exist also in the field of medical imaging [AJ09]). Their aim is
to create from scratch curve-skeletons that can also be used as
input for an inverse skeletonization algorithm, so they allow
only basic operations which are not sufficient for editing an
automatically extracted skeleton.

In [ULP∗ss] an algorithm for computing a coarse quad-
layout starting from a shape and its curve skeleton was pro-
posed. We found that using automatically extracted skeletons
often brought to sub-optimal results even using some simpli-
fication strategies. We then developed the tool we present in
this paper, that have shown to be easy-to-use and practical for
interactively editing curve-skeletons. It allowed us to obtain
optimal results within our quad-layout computation method
and we thought it can allow other researchers or practitioners
to obtain, within minutes, curve-skeletons that are tailored
for their specific task.

The rest of the paper is organized as follows: in Section 2
we will give a brief overview of the different algorithms for
computing curve-skeletons at the state-of-the-art, interactive
tools for curve-skeleton handcrafting will be discussed as
well; in Section 3 we will discuss the limitation of using the
current skeletonization approaches in real world applications
and the reasons why the tool we are presenting in this paper
could be a useful resource; in Section 4 we will give an

c© The Eurographics Association 2015.

DOI: 10.2312/stag.20151299

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20151299


S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

overview of our tool, describing what one can do with it; in
Section 5 we will present an example of a specific use case,
to give the feeling of the usage; in section 6 we will draw our
conclusions, consider the limitations and explain what can be
done in the future to improve the work.

The project page with a link to the repository containing
the entire source code of the presented tool is available at
http://francescousai.info/skel_lab

2. Related work

Several automatic skeletonization methods have been pre-
sented in the last two decades. A common categorisation
of these methods is based on their input, which can usually
be a surface mesh [JST15], a voxel grid [SJT14] or a point
cloud [TZCO09]. We refer to [Tag13] for a recent survey.
Nowadays a universally accepted definition of what a curve
skeleton is, is still lacking. The medial geodesic skeleton de-
fined in [DS06] is the only exception, however, while the
theoretical definition is precise and sound, the implementa-
tion of the skeletonization algorithm provided by the authors
presents some defects. One important issue regards its long
computational times, since it requires computing the geodesic
paths between each pair of points on the surface. There are
also stability issues, due to the sensitivity of the medial axis to
small perturbations of the surface, which brings to noisy skele-
tal paths and spurious branches, especially between nodes
where the branching occurs.

Since different skeletonization approaches exist, it is dif-
ficult to compare the quality of the results of each method.
Important information about the desirable properties of a
curve-skeleton can be found in [CSM07].

The current trend in skeletonization is to use a contraction-
based approach, which relies on contracting the 3D shape rep-
resented as a triangle mesh accordingly to its mean curvature-
flow until it collapses to a monodimensional object. We re-
fer to [SJT14, SYJT13] for a qualitative comparison of the
more representative methods based on this approach. A re-
cent contraction-based method is [TAOZ12] which is a ro-
bust skeletonization algorithm whose resulting skeletons are
topology-preserving, usually well centered and smoother than
previous methods.

Notable exceptions to this trend are [LGS12,LS13,KJT13]
which, rather than relying on the geometric properties of the
input, operate emulating human perception, synthesising the
curve-skeleton of a 3D object from the curve-skeletons of
a set of its 2D silhouettes defined from different points of
view. This approach, while being less robust than [DS06,
ATC∗08,TAOZ12] presents heuristics for collapsing spurious
branches and closing loops whenever two terminal nodes
have intersecting maximal balls, which are beneficial for the
resulting structure.

Figure 1: A direct comparison of three automatic skeletoniza-
tion methods. [TAOZ12] (left), [DS06] (center) and [LS13]
(right) on the same hand model. One can notice that the termi-
nal nodes are the same in all the three skeletonization, while
the internal nodes are different in number and position. It is
difficult to tell which one is the most correct.

2.1. Skeleton editing tools

The term Skeletonization denotes the process of computing a
curve-skeleton from a 3D shape, similarly we can define the
Inverse Skeletonization as the process of building a 3D shape
from which the input skeleton could have been extracted.

In recent years, inverse skeletonization became a quite
active research field, giving rise to different works [BMW12,
JLW10, HBC∗10]. Commercial solutions for building 3D
shapes, especially creature-like, were also developed and
made publicly available [Aut, ZBr].

Almost all the aforementioned methods or commercial
software, comprised an interactive skeleton creation tool. The
aim of these tools is to quickly create 3D models that will
have to be further refined, hence they are designed to en-
able the user to do only simple operations such as adding
new nodes, move them around and changing their radius.
ZSpheres [ZBr], which is embedded in a complete modelling
tool, is more complete and complex than the others afore-
mentioned, but on the curve-skeleton editing side it provides
the same basic operations. These basic operations are not
enough when a user needs to easily process a skeleton that
has been computed with one of the presented automatic meth-
ods. Our tool addresses this need allowing to operate on a
curve-skeleton at different scales with a set of operations
that are not present in other tools and have shown to be very
useful in practice.

3. Motivation

From a practical point of view all the methods presented
in the previous section have specific properties and issues
making the resulting skeletons difficult to use, without further
processing, in the pipelines of the applicative fields presented
in the introduction. An important aspect is that each of the
presented methods requires some input parameters to be set in
order to fine-tune how the algorithm behaves, which usually
regulates its quality and especially its ability to catch small
scale features. This brought us to make the following points:

c© The Eurographics Association 2015.

122

http://francescousai.info/skel_lab


S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

• The computation of a good curve-skeleton is not a one-
click operation since it requires a, sometime complex, pa-
rameter setting that is potentially tightly coupled to both
the specific application and the specific shape; this usu-
ally leads to perform several attempts before obtaining the
desired skeleton.

• Since most of the parameter setting is about detecting small
scale features, it turns out that more sensitivity usually
means more noise and spurious branches; on the other
hand, less noise usually brings to the risk of not detecting
all the meaningful features of the shape being processed.

• Given the semantic nature of the information encoded in
a curve-skeleton, it results difficult, from an application
agnostic point of view, to define what a meaningful feature
is and how much noise can be tolerated in order to capture
it.

As can be seen in Fig. 1 different skeletonization methods
give very different results even on models of moderate com-
plexity. It is not easy to say which of the three skeletons is
correct, since that all the considered methods have different
approaches. Furthermore we can say that rather than evaluat-
ing if an extracted curve-skeleton is correct or not, it is worth
to evaluate if it is suitable or not for the purpose and if it
brings optimal results or not. We have observed that is more
practical to rely on a pipeline which involves an automatic ex-
traction method with a limited choice of standard parameter
values, followed by a manual editing stage with an interactive
tool like ours, rather than relying on a complete automatic
pipeline in which small changes to the input parameters bring
to different results in which a choice between the number of
meaningful features preserved and the number of spurious
features introduced is needed.

3.1. Applicative contexts

As we mentioned in the introduction we proposed in
[ULP∗ss] an algorithm for computing a coarse quad-layout
starting from a shape and its curve skeleton. We found that
optimal skeletons for this application are robust, connected
and reliable [CSM07]. Strong homotopy is not required but
its beneficial. Optimal results have been obtained when the
skeleton had branches with a small number of nodes while
still well approximating the shape, and the maximal balls of
the endpoints of each branch did not intersect the other ones.
In some cases, optimal results can be achieved with a little
interactive editing of the automatically extracted skeleton
collapsing spurious branches, handcrafting the missing ones
and lowering the number of nodes retaining only the most
representative ones.

Skeletons with small number of nodes are beneficial also
in other application fields, such as defining kinematic skele-
tons, which are composed of very few nodes for each bone,
that require to be carefully placed. In those applications an
automatic simplification of a skeleton can potentially lead to
kinematic skeletons that are not well suited for the purpose,

since the nodes associated with articulations need to be pre-
served, but the presence of an articulation of the shape is a
semantic feature that is difficult to capture algorithmically.

4. Skeleton Lab

Our tool, Skeleton Lab, allows the user both to create new
skeletons and edit existing ones, hence it provides functional-
ities that other skeleton editors usually lack. This section will
present the set of its distinguishing features, their purpose
and some design choices.

We consider the skeleton as an attributed graph G = (N,L)
where N is the set of nodes and L the set of links between
nodes. Each node Ni ∈ N has a few attributes:

• Position in space.
• Radius of the associated maximal ball.
• Type of the node (the classification follows).
• List of its neighbouring nodes, since we do not explicitly

store the links.

We classify the nodes of the skeleton as: Joint nodes (Jn)
that have two incident arcs; Leaf nodes (Ln) that have only
one incident arc; and Branching nodes (Bn) that have more
than two incident arcs. We also allow to mark a Jn as an
Articulation (An), that is a semantically meaningful Jn(e.g.,
a human ankle or elbow).

Figure 2: A visual explanation of the terminology we use. In
the left image Bn’s are red, Ln’s are green, and An’s are blue,
while Jn’s are not shown. In the right image each Branch
has a different color.

With the term Branch we refer to a sequence of linked
nodes starting and ending with either a Bn or a Ln. When a
branch ends with a Ln we call it Ln-ending, while when the
starting and the ending nodes are exactly the same, we have
a Looping-Branch.

c© The Eurographics Association 2015.

123



S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

With our tool the user is allowed to visualise and manip-
ulate a curve-skeleton and optionally visualise the triangle
mesh it is connected to.

By design we have chosen to group functionalities into
two different modes:

Node mode in which each operation is referred to the node
or set of nodes currently selected.

Branch mode allows to directly manipulate a selected
branch with operations that are meaningful only when
considering an entire branch.

There are also a few operations that work on all the skele-
tal structure. From our experience manually editing a curve-
skeleton is usually performed using a trial-and-error approach,
hence undo/redo is available for both operations and selec-
tion.

4.1. Basic operations

All the tools presented in Section 2 allow the user to perform
just basic operations, that are: adding a new node connected
to an existing one; translate and rotate in space a selected set
of nodes; change the radius of their maximal ball. All these
basic functionalities of a skeleton editor are all available in
our tool too.

4.2. Node mode

Here we present all the possibilities offered in node mode.

4.2.1. Adding midpoint and constrained movement

Once two existing and directly connected nodes are se-
lected, the user is allowed to create a new node connected
to them and placed in the mid-
point of the segment connecting
them (see inset). Strictly related
to this, our tool allows the user
to move a selected Jn constrain-
ing its movement only to points
in space that are linear interpola-
tion between the position of its
two neighbours, in order to fine
tune its position with respect to
them. These two operations have
shown to be useful when creat-
ing a skeleton from scratch in a
coarse to fine manner where only Bn and Ln are created at
first and branches are progressively modelled adding Jn’s.

4.2.2. Removing nodes

Removing one or more nodes is an operation with a number
of different cases that have to be taken in account. In fact,
depending on which nodes the user is deleting, the process
will be different.

When removing a single node there are three possible
cases depending on the type of the node that is going to be
removed:

• Ln the node is removed without any further operations.
• Jn the node is removed and the two nodes linked to it are

then connected each other.
• Bn the user is allowed to choose between two possibilities.

The first one is to delete all the links of the node. Since
we do not allow to create separate components, this means
that all the Ln-ending branches connected to the Bn will be
removed. Other branches, the ones connected to other Bn,
will be kept untouched except for the fact that removing
one of their endpoint, they will then end with an Ln. The
second possibility is to transfer all the links of the Bn that
is going to be deleted, to another node selected by the user.
The node on which the links are going to be transferred
must be a neighbour of them removed one.

It is important to note that the tool allows to handle isolated
nodes or branches but does not allow to explicitly create them.
This is a design choice, since a curve-skeleton is always a
single connected component we do not allow to create dis-
connected components, but we allow to load a disconnected
skeleton in order to repair it interactively. When a user tries
to remove a set of nodes in Node Mode, the operation is per-
formed as a sequence of single node removals. When Bn’s
are involved all the Ln-ending branches that are connected to
them are traversed and their nodes removed.

4.2.3. Copy and paste

Especially when creating a skeleton from a scratch, it can of-
ten happen that a user wants to replicate a part of the skeleton
that he is editing. For this reason our tool allows to copy and
paste a set of connected nodes. When copying, the user is
required to choose a Source node, when pasting a Destination
one.

The Source node has to be chosen from the ones that are
being copied, the Destination node can be any node of the
skeleton. When pasting the copied nodes, Source will be
merged into Destination in order to keep a single connected
component. Destination will be modified only inheriting all
Source’s copied neighbours. It is important to notice that
copy and paste are disjoint operations, and, as such, one can
perform them in different moments.

4.2.4. Creating and breaking links

Since we represent the curve-skeleton as a graph, we allow
the user to explicitly manipulate the graph’s connectivity in
two ways:

• Merge two nodes creating a looping-branch.
• Break a link between two nodes. We use the Dijkstra’s

algorithm to check if breaking the link will create two
separate components, if so we prevent the operation.

c© The Eurographics Association 2015.

124



S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

4.3. Branch mode

The operations we illustrated so far are functions operating
on nodes. We here describe the operations work on whole
branches of the skeleton.

4.3.1. Pruning

Pruning only works on Ln-ending branches. It allows the
users to delete one or more nodes of a branch starting from
the Ln of the selected bone.

4.3.2. Remove

If the branch is a Ln-ending one, it will be removed without
further operations, if both of its endpoints are Bn they will be
merged into one of the two. This operation is particularly use-
ful when repairing skeletons since one of the most common
defects is the presence of a lot of short spurious branches.

4.3.3. Resampling

Resampling allows the users to change the number of nodes of
a branch. It is the most complex operation one can perform on
branches. It is done using arc-length parameterisation using
the method presented in [Hec94] with slight modifications
in order to take into account both position and radii of the
involved nodes. In this way, the three-dimensional structure
of the branch is maintained and the radii of the new nodes
are approximated from the original ones. Both sub-sampling
and super-sampling are allowed, but while the second one is
a smoothness preserving operation, the first one is not.

A special case for resampling occurs when the branch con-
tains some An. Since An’s convey semantically meaningful
information, those branches are resampled preserving both
position and radii of An’s. Furthermore each branch can be
sub-sampled at least to have E +#An nodes, where E is the
number of distinct endpoints of the branch.

Figure 3: An example of resampling. The blue branch was
subsampled from 54 to 7 nodes. The right image is mirrored
to better show the results.

Resampling is a very useful functionality, due to the fact

that automatically extracted skeletons are often composed
by a very large amount of nodes and practical applications
usually do not need that resolution (e.g., [DS06] produces
skeletons with hundreds of nodes even for simple models).

4.4. Skeleton-wide operations

We here present a few operations that allow to manipulate
the entire skeleton when a mesh is also loaded. In order to
perform all the following operations we keep an AABB tree
of the loaded mesh. If the mesh it’s not a triangular mesh it is
triangulated before building the AABB tree.

4.4.1. Fix the external nodes

When a mesh is loaded along with a skeleton it is possible
to check if some of the skeleton’s nodes are outside of the
mesh and move them inside. This can be useful since most
of the skeletonization algorithms cannot guarantee that all
the nodes are internal to the mesh; even the more robust ones
as [TAOZ12] with particular values of the parameters can
lead to branches crossing the mesh boundaries instead of
flowing inside them.

For each node Ni we find its closest face of the mesh F
with normal NF . If Ni is outside the mesh we calculate its
new position as

Ni− [d(Ni,F)+ ε]∗NF

where d is the Euclidean distance and ε a small positive
number.

4.4.2. Center the skeleton and update the maximal balls

One of the desired properties of a curve-skeleton is centered-
ness, which is the property of being medial to the shape it
describes.

As stated in [CSM07], perfect centeredness is achieved
when the curve-skeleton lies on the medial surface and it
is centered with respect to it. However perfect centeredness
could be undesirable due to the sensitivity of the medial
axis to small perturbations on the object’s surface. Moreover
achieving such result would require as input both the curve-
skeleton and its corresponding medial axis, while state-of-the-
art algorithms do not provide such output and some methods
do not compute the medial axis at all.

Starting from the quantification of approximate centered-
ness proposed in [CSM07] we have implemented the follow-
ing algorithm.

For each skeleton’s node Ni we denote with
−→
Ni the local

direction of the skeleton computed as :

c© The Eurographics Association 2015.

125



S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

−→
Ni =


−−→
NjNi if Ni is Ln
−−→
NiNk if Ni is Bn
−−→
NjNi +

−−→
NiNk if Ni is Jn

where Nj and Nk are, respectively, the predecessor and the
successor of Ni in the branch they belong to.

We cast n uniformly distributed radial rays with origin in
Ni and orthogonal to

−→
Ni computing their intersections with

the object surface. For each ray Rh we consider only the
intersections obtained pinching the object from the inside
and we store the intersection Ih that is nearest to Ni. We also
discard all the pair of opposite rays for which at least one
valid intersection is not found.

Figure 4: A section of the tubular branch where the node Ni
is centered. On the top left we show the maximal ball and
some of the rays casted; on the top right we show how to
compute the midpoints; on the bottom left we show how we
compute the centroid; on the bottom right the new position of
Ni and the new maximal ball are shown.

For each pair of opposite rays (Rh,R
′

h) we calculate Ch as
the midpoint of their intersections (Ih, I

′

h), then calculate the
new position of Ni as the centroid of all the Ch’s and the new
maximal ball radius as the average semi-distance of all the
intersection pairs. If Ni is a Bn we calculate its new position
and radius, respectively, as the centroid of the positions and
mean radius calculated separately for each incident branch.
The presented procedure works quite well even if its results
are dependent to the original node’s position and the skeleton
directions. We observed that a single iteration of the proce-
dure is usually not enough to obtain optimal results, however
since convergence cannot be guaranteed, it is up to the user to
iterate the procedure until the results are satisfactory. Figure 4
shows an usage example of the re-centering procedure.

5. Results and Discussion

In this section we show how some automatically extracted
curve-skeletons have been processed with our tool in order to
be used as input in the pipeline presented in [ULP∗ss].

Figure 6 shows how we edited one of the most challenging
skeletons we have faced, in order to compute the quad layout
of the model of the Stanford Dragon. The skeleton originally
had 1050 nodes and, as can be seen in the close-up, some of
the branches of the horns where disconnected. The resulting
skeleton was composed of 193 nodes, 6 spurious branches
were removed during the process. Complete editing, from a)
to c) took about 15 minutes.

Figure 5: Skeleton of an octopus model extracted using
[TAOZ12] (top) and its edited version (down) with all the
spurious branches collapsed. Close-ups on right side of the
image show how the unnecessary Bn ’s were removed in
order to obtain the quad layout depicted on the lower right.

Another example showing how some skeletonization meth-
ods, while producing correct results, may fail at conveying
the correct semantic information can be seen in Figure 5.
Since a human would usually describe an octopus as a living
being composed of a big head and 8 tentacles starting from
the bottom side of the head, we edited the skeleton removing
all the spurious branches inside the head and inside one of the

c© The Eurographics Association 2015.

126



S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

Figure 6: Editing process of a complex skeleton extracted with [DS06], a) has been computed with a number of disconnected
branches (close-up) due to a buggy implementation or erroneous parameter setting. The skeleton was first reconnected b), and
simplified c). In the second row we show the skeleton with its associated maximal balls d) and the quad-layout obtained with it e).

tentacles. The original skeleton contained 23 branches while
the result shown on the right of Figure 5, obtained in less
than 4 minutes, contained the 9 branches one would expected.
It is also important to note that using the original skeleton
the resulting quad-layout would have been completely wrong,
while the edited version brought to an optimum. In our exper-
iments the tool have shown to be versatile enough to be used
for both quick-fixes and complex editing and repairing tasks.

Our tool relies on the Qt Framework, libQGLviewer [lib]
and CGAL [CGA] (we use their AABB tree implementa-
tion), and it is able to load curve-skeletons produced by the
available implementations of [TAOZ12, DS06, LS13].

6. Concluding remarks

In this paper we presented a novel tool for the interactive
processing of curve-skeletons in order to make them fit the
application in which they will be used. We observed that the
evaluation of what is a good curve-skeleton is strictly depen-
dent to the application in which it will be used and none of
the existing skeletonization methods can be used for every
application always obtaining optimal results. This is not a
defect of the proposed approaches since the topological and
semantic information that a skeleton encodes are not easy
to capture algorithmically, and fine-tuning the parameters
required by the skeletonization methods is often necessary
but not resolutive. While developing the method presented
in [ULP∗ss] we have observed that in order to obtain optimal
results from the pipeline, an effective and practical approach
was to automatically extract the curve-skeleton, choosing the
method we experienced to be the best suited for the consid-
ered shape using standard parameter values, and process it

with the presented tool in order to optimally fit our pipeline
requirements.

Future work

Since we consider our tool a useful instrument for researchers
and practitioners we plan to make it publicly available and
extend its functionalities with both interactive operations
and heuristics such as simmetry planes management and
automatic spurious branch collapsing.

References
[AJ09] ABEYSINGHE S. S., JU T.: Interactive skeletonization of

intensity volumes. The Visual Computer 25, 5-7 (2009), 627–635.
1

[ATC∗08] AU O. K.-C., TAI C.-L., CHU H.-K., COHEN-OR D.,
LEE T.-Y.: Skeleton Extraction by Mesh Contraction. ACM Trans.
Graph. 27, 3 (Aug. 2008), 44:1–44:10. 2

[Aut] AUTODESK 123D:. http://www.123dapp.com/. 2

[BAS14] BÆRENTZEN J. A., ABDRASHITOV R., SINGH
K.: Interactive Shape Modeling Using a Skeleton-mesh Co-
representation. ACM Trans. Graph. 33, 4 (July 2014), 132:1–
132:10. 1

[Blu67] BLUM H.: A Transformation for Extracting New Descrip-
tors of Shape. Models for the Perception of Speech and Visual
Form (1967), 362–380. 1

[BMW12] BÆRENTZEN J., MISZTAL M., WEŁNICKA K.: Con-
verting skeletal structures to quad dominant meshes. Computers &
Graphics 36, 5 (2012), 555 – 561. Shape Modeling International
(SMI) Conference 2012. 2

[BP07] BARAN I., POPOVIĆ J.: Automatic rigging and animation
of 3d characters. In ACM SIGGRAPH 2007 Papers (New York,
NY, USA, 2007), SIGGRAPH ’07, ACM. 1

[CGA] CGAL, COMPUTATIONAL GEOMETRY ALGORITHMS LI-
BRARY:. http://www.cgal.org. 7

c© The Eurographics Association 2015.

127

http://www.123dapp.com/
http://www.cgal.org


S. Barbieri, P. Meloni, F. Usai and R. Scateni / Skeleton Lab: an Interactive Tool to Create, Edit, and Repair Curve-Skeletons

[CSM07] CORNEA N. D., SILVER D., MIN P.: Curve-Skeleton
Properties, Applications, and Algorithms. IEEE Transactions on
Visualization and Computer Graphics 13, 3 (May 2007), 530–548.
2, 3, 5

[DS06] DEY T. K., SUN J.: Defining and Computing Curve-
skeletons with Medial Geodesic Function. In Proceedings of the
Fourth Eurographics Symposium on Geometry Processing (Aire-
la-Ville, Switzerland, Switzerland, 2006), SGP ’06, Eurographics
Association, pp. 143–152. 2, 5, 7

[HBC∗10] HIJAZI Y., BECHMANN D., CAZIER D., KERN C.,
THERY S.: Fully-automatic Branching Reconstruction Algo-
rithm: Application to Vascular Trees. In Proceedings of the 2010
Shape Modeling International Conference (Washington, DC, USA,
2010), SMI ’10, IEEE Computer Society, pp. 221–225. 2

[Hec94] HECKBERT P. S.: Graphics Gems IV. Academic Press
Professional, Inc., San Diego, CA, USA, 1994, ch. Bilinear Coons
Patch Image Warping, pp. 438–446. 5

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII
T. L.: Topology matching for fully automatic similarity estimation
of 3d shapes. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA, 2001), SIGGRAPH ’01, ACM, pp. 203–212. 1

[JLW10] JI Z., LIU L., WANG Y.: B-Mesh: A Modeling System
for Base Meshes of 3D Articulated Shapes. Computer Graphics
Forum (Proceedings of Pacific Graphics) 29, 7 (2010), 2169–2178.
2

[JST15] JALBA A., SOBIECKI A., TELEA A.: An Unified Multi-
scale Framework for Planar, Surface, and Curve Skeletonization.
Pattern Analysis and Machine Intelligence, IEEE Transactions on
PP, 99 (2015), 1–1. 2

[KJT13] KUSTRA J., JALBA A., TELEA A.: Probabilistic View-
based 3D Curve Skeleton Computation on the GPU. 237–246.
2

[LGS12] LIVESU M., GUGGERI F., SCATENI R.: Reconstructing
the Curve-Skeletons of 3D Shapes Using the Visual Hull. Visu-
alization and Computer Graphics, IEEE Transactions on 18, 11
(Nov 2012), 1891–1901. 2

[lib] LIBQGLVIEWER:. http://libqglviewer.com/. 7

[LS13] LIVESU M., SCATENI R.: Extracting curve-skeletons from
digital shapes using occluding contours. The Visual Computer 29,
9 (2013), 907–916. 2, 7

[LZLW15] LIU L., ZHANG Y., LIU Y., WANG W.: Feature-
preserving t-mesh construction using skeleton-based polycubes.
Computer-Aided Design (2015), 162–172. 1

[SJT14] SOBIECKI A., JALBA A., TELEA A.: Comparison of
curve and surface skeletonization methods for voxel shapes. Pat-
tern Recognition Letters 47 (2014), 147 – 156. Advances in
Mathematical Morphology. 2

[SYJT13] SOBIECKI A., YASAN H., JALBA A., TELEA A.: Qual-
itative Comparison of Contraction-Based Curve Skeletonization
Methods. In Mathematical Morphology and Its Applications
to Signal and Image Processing, Hendriks C., Borgefors G.,
Strand R., (Eds.), vol. 7883 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 425–439. 2

[Tag13] TAGLIASACCHI A.: Skeletal Representations and Appli-
cations. CoRR abs/1301.6809 (2013). 1, 2

[TAOZ12] TAGLIASACCHI A., ALHASHIM I., OLSON M.,
ZHANG H.: Mean Curvature Skeletons. Comp. Graph. Forum 31,
5 (Aug. 2012), 1735–1744. 2, 5, 6, 7

[TZCO09] TAGLIASACCHI A., ZHANG H., COHEN-OR D.:
Curve Skeleton Extraction from Incomplete Point Cloud. ACM
Trans. Graph. 28, 3 (July 2009), 71:1–71:9. 2

[ULP∗ss] USAI F., LIVESU M., PUPPO E., TARINI M., SCATENI
R.: Extraction of the Quad Layout of a Triangle Mesh Guided by
its Curve-Skeleton. ACM Trans. Graph. (in press). 1, 3, 6, 7

[ZBG∗07] ZHANG Y., BAZILEVS Y., GOSWAMI S., BAJAJ C. L.,
HUGHES T. J.: Patient-specific vascular {NURBS} modeling
for isogeometric analysis of blood flow. Computer Methods in
Applied Mechanics and Engineering 196, 29–30 (2007), 2943 –
2959. 1

[ZBr] ZBRUSH ZSPHERES:. http://pixologic.com/
zbrush/features/zspheres/. 2

c© The Eurographics Association 2015.

128

http://libqglviewer.com/
http://pixologic.com/zbrush/features/zspheres/
http://pixologic.com/zbrush/features/zspheres/

