
STAG: Smart Tools & Apps for Graphics (2014)
Andrea Giachetti (Editor)

Enhanced Sphere Tracing

Benjamin Keinert1 Henry Schäfer1 Johann Korndörfer Urs Ganse2 Marc Stamminger1

1University of Erlangen-Nuremberg 2University of Helsinki

Figure 1: Example scenes showing the techniques presented in this paper. The jewel scene (left) and the city scene (center) both
show real-time renderings (21.1 ms (47.4 Hz) and 26.7 ms (37.5 Hz) respectively) of scene geometry entirely represented by a
single signed distance bound. The image on the right shows the result of integrating our techniques into a non-real-time GPU
path tracer.

Abstract
In this paper we present several performance and quality enhancements to classical sphere tracing: First, we
propose a safe, over-relaxation-based method for accelerating sphere tracing. Second, a method for dynamically
preventing self-intersections upon converting signed distance bounds enables controlling precision and rendering
performance. In addition, we present a method for significantly accelerating the sphere tracing intersection test
for convex objects that are enclosed in convex bounding volumes. We also propose a screen-space metric for
the retrieval of a good intersection point candidate, in case sphere tracing does not converge thus increasing
rendering quality without sacrificing performance. Finally, discontinuity artifacts common in sphere tracing are
reduced using a fixed-point iteration algorithm. We demonstrate complex scenes rendered in real-time with our
method. The methods presented in this paper have more universal applicability beyond rendering procedurally
generated scenes in real-time and can also be combined with path-tracing-based global illumination solutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid,
and object representations—Geometric algorithms, languages, and systems I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Sphere tracing has been known as a rendering technique
for signed distance bounds for at least 20 years (Hart et
al. [HSK89], [Har96]) and has recently seen increased inter-
est due to advances in graphics hardware and the increased
significance of procedural content generation. The algorithm
has not only been applied to the direct real-time rendering of
implicit scene descriptions [RMD11] but also to per-pixel

displacement mapping [Don05]. Signed distance bounds –
expressed as functions e.g. in a pixel shader – can be a
more elegant, compact, and flexible representation of ge-
ometry and animation compared to traditional triangle-based
or volumetric representations. Sphere tracing as a rendering
technique – as opposed to rasterization – reflects a straight-
forward implementation that enables the practical applica-
tion of signed distance bound geometry representations in
the context of real-time rendering. We show how sphere trac-

c© The Eurographics Association 2014.

DOI: 10.2312/stag.20141233

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20141233

Keinert et al. / Enhanced Sphere Tracing

ing can be made a viable tool even for rendering complex
scenes in real-time, overcoming quality and performance re-
strictions that are present when using the classical sphere
tracing algorithm.

2. Previous work

The basic principle behind sphere tracing was first applied to
the rendering of deterministic fractal geometry by Hart et al.
[HSK89] in 1989. A canonical overview of this standard
method can be found in Hart et al. [Har96]. Based on this
method, Evans [Eva06] presented methods for effectively
approximating ambient occlusion lighting by exploiting the
properties of signed distance bounds.

Singh et al. [SN10] proposed a method for real-time ray
tracing of arbitrary implicit surfaces on the GPU. In con-
trast to sphere tracing based methods the accuracy and per-
formance of their technique depends on a predefined surface
dependent marching step size. Additionally their method re-
quires the repeated evaluation of the surface gradient for
their Taylor root-containment test. This is not feasible for
more complex scenes consisting of multiple primitives.

Suitable methods for generating signed distance func-
tions remain a field of active research. While converting
other geometry representations into distance functions via
a distance transform is feasible [Lik08], these often suffer
from the resulting distance field being of low resolution.
Reiner et al. [RMD11] present a system for interactive mod-
eling of analytic descriptions of distance functions, suitable
for use in a sphere tracing based rendering system.

An improved prevention of self-intersection in secondary
rays by locally selecting an ε value was addressed in [DK06],
whose algorithm specifically focusses on ray tracing Bézier
patches and triangles.

3. Enhancing sphere tracing

The function f : R3 → R, representing a signed distance
bound of an implicit surface f -1(0), can directly be ray-
traced using the sphere tracing algorithm as introduced by
Hart [Har96]. The function f : R3→ R is a signed distance
bound of the corresponding implicit surface f -1(0) if and
only if Equation 1 is satisfied. We use dist(x, f -1(0)) to de-
note the Euclidean distance of x from the implicit surface
f -1(0).

f (x)≤

{
−dist(x, f -1(0)) if x inside of f -1(0)
+dist(x, f -1(0)) if x outside of f -1(0)

(1)

If equality holds for Equation 1, f is called a signed distance
function for the surface f -1(0).

Sphere tracing facilitates approximating the intersection
of a ray r(t) = d ·t+o, where d is the normalized direction, o
the origin of the ray, and f the signed distance bound, which
represents the geometry. This intersection is computed by

Figure 2: Illustration of the classical sphere tracing algo-
rithm: The intersection point with a surface is determined
by traversing along the ray, using the distance to the closest
surface at each iteration step until the distance is below a
threshold

// o, d : ray origin, direction (normalized)
// t_min, t_max: minimum, maximum t values
// tau: radius threshold
float t = t_min;
int i = 0;
while (i < MAX_ITERATIONS && t < t_max) {

float radius = f(d*t + o);
if (radius < tau)

break;
t += radius;
i++;

}
if (i == MAX_ITERATIONS || t > t_max)

return INFINITY;
return t;

Listing 1: A basic implementation of sphere tracing.

finding the smallest positive solution t of the root finding
problem f ◦ r(t) = 0.

Figure 2 shows the underlying principle of the algorithm:
Starting at p0 = o, a new position pi+1 is determined by ad-
vancing the previous position pi along the ray direction d
with the radius f (pi) of the unbounding sphere at this po-
sition (i.e. the sphere with radius f (pi) around pi which is
guaranteed not to intersect the surface f−1(0)), yielding the
iteration rule pi+1 = pi + d · f (pi). The iteration can be ter-
minated using different criteria. An example implementation
using a maximum number of iterations or a threshold τ as a
termination criterion can be found in Listing 1.

In the following sections we present five techniques that
expound upon the basic sphere tracing algorithm, two of
which led to accelerated traversal of the ray (Sections 3.1
and 3.5), two of which increase visual quality by reduc-
ing common artifacts (Sections 3.2 and 3.4) and the last of
which presents an optimized approach for preventing self-
intersections when tracing through transparent objects (Sec-
tion 3.3).

c© The Eurographics Association 2014.

2

Keinert et al. / Enhanced Sphere Tracing

Figure 3: Comparison of sphere tracing without (top) and
with our over-relaxation method (bottom). Blue circles de-
note iteration steps conducted with standard sphere tracing,
red circles denote steps with over-relaxation using ω = 1.6.
The rightmost red circle and the yellow circle show an iter-
ation step where over-relaxation fails (i.e. the circles do not
overlap). The arrow points towards p f allback which is used
as a starting point for completing tracing of the ray after
over-relaxation failure has been detected. Note how fewer
iterations are needed to reach a similar position on the ray
in the bottom image.

3.1. Over-relaxation sphere tracing

We apply the principle of over-relaxation to sphere tracing:
Instead of stepping along the ray using the radius of the un-
bounding sphere at each iteration, a step size δi = f (pi) ·ω
can be used, where f (pi) denotes the value of the signed
distance bound at the position of the i-th iteration and
ω ∈ [1;2) the relaxation parameter. By itself, such over-
relaxation can cause stepping into and over objects repre-
sented by the signed distance bound. It is therefore necessary
to detect and handle these cases.

Whenever the unbounding spheres of two consecutive
marching steps overlap, it is ensured that the segment of the
ray in between the union of these unbounding spheres can-
not intersect any geometry. Using this criterion we can easily
detect and handle scenarios in which over-relaxation might
be overshot. If | f (pi−1)|+ | f (pi)| < δi−1 over-relaxation
may miss an intersection with a surface. In this case our im-
plementation no longer uses over-relaxation and defaults to
conventional sphere tracing starting at position p f allback =
pi +d ·δi−1 · (1−ω).

Figure 3 (bottom) illustrates defaulting to conventional
sphere tracing in cases where a surface intersection may have
possibly been missed. It must be noted, however, that if the
unbounding sphere around p f allback overlaps with the un-
bounding sphere around pi the previous step using the over-
relaxation method is guaranteed to not pass through any sur-
face and tracing can be continued from pi. This is a trivial

extension, but requires more branching and state handling
in the innermost loop of our GPU implementation, yielding
an overall diminished rendering performance due to diverg-
ing threads. An implementation of the relaxation technique
combined with the method described in the next section can
be found in Listing 2.

3.2. Screen-space aware intersection point selection

Whenever the maximum number of iterations has been ex-
ceeded, we face the problem of choosing an appropriate
point along the ray that is to be regarded as the intersec-
tion. This situation occurs frequently when a ray grazes an
object’s edge without intersecting it, as shown in Figure 4.
The large number of iterations needed to clear the grazed ob-
ject may result in the ray terminating in mid-air behind the
object. While increasing the maximum number of iterations
can reduce the number of pixels that show this behavior, they
can never be completely eliminated and – particularly with
moving images and HDR rendering in high-contrast areas
– still frequently produce visible artifacts. Conversely, we
wish to keep the maximum number of iterations minimal
for performance reasons. The traditional approach of pick-
ing the last point evaluated is thusly detrimental in this case.
Instead, we employ a screen-space error based metric to se-
lect the best shading point: We choose the point along the ray
with the smallest unbounding sphere radius, as measured in
screen-space. Additionally, the same criterion is used to ter-
minate the ray early whenever this radius is smaller than one
half the size of a pixel. An implementation of this technique
can be found in Listing 2. To compensate for the objects’ in-
flation of half a pixel, a level set of the distance bound can be
used, as demonstrated in [Har96]. Figure 8 shows the result
of selecting the intersection point using our method versus
using the last point along the ray.

screen projected
error

Figure 4: Intersection point selection based on the screen-
space size of the unbounding sphere. The yellow circle rep-
resents the unbounding sphere around the very last point
evaluated when the maximum number of iterations has been
reached. The red circle represents the smallest unbounding
sphere measured in screen-space.

c© The Eurographics Association 2014.

3

Keinert et al. / Enhanced Sphere Tracing

N N N

Figure 5: Self-intersection prevention for refraction rays. The two rightmost images show the use of our εdynamic. Overview of
the scenario (left). Use of an overly small global ε value (center left). Our method (center right): The new ray origin derived
by offsetting p (surrounded by a yellow circle) along the normal using εdynamic = 2 · | f (p)| since | f (p)| ≥ εmin. Usage of εmin
(right): The point p is very close to the surface (| f (p)| ≤ εmin) and the new ray origin is computed by offsetting along the
normal using εdynamic = 2 · εmin).

// o, d : ray origin, direction (normalized)
// t_min, t_max: minimum, maximum t values
// pixelRadius: radius of a pixel at t = 1
// forceHit: boolean enforcing to use the
// candidate_t value as result
float omega = 1.2;
float t = t_min;
float candidate_error = INFINITY;
float candidate_t = t_min;
float previousRadius = 0;
float stepLength = 0;
float functionSign = f(o) < 0 ? -1 : +1;
for (int i = 0; i < MAX_ITERATIONS; ++i) {

float signedRadius = functionSign * f(d*t + o);
float radius = abs(signedRadius);

bool sorFail = omega > 1 &&
(radius + previousRadius) < stepLength;

if (sorFail) {
stepLength -= omega * stepLength;
omega = 1;

} else {
stepLength = signedRadius * omega;

}

previousRadius = radius;
float error = radius / t;

if (!sorFail && error < candidate_error) {
candidate_t = t;
candidate_error = error;

}

if (!sorFail && error < pixelRadius || t > t_max)
break;

t += stepLength;
}

if ((t > t_max || candidate_error > pixelRadius) &&
!forceHit) return INFINITY;

return candidate_t;

Listing 2: An implementation of over-relaxation sphere trac-
ing with screen-space-based intersection point selection.

3.3. Dynamic ε for self-intersection prevention

Preventing self-intersections of secondary rays in ray trac-
ing methods is a well-known and greatly researched prob-
lem [DK06]. In many cases, it is sufficient to virtually offset
the intersection point using a small global ε value along the
ray direction or the normal to retrieve the new origin for a
secondary ray.

However, with sphere tracing, the intersection points’ dis-
tances from the surface can exhibit relatively large varia-
tions, particularly in case a screen-space metric is used for
iteration termination. Thus, the use of a global ε value is ren-
dered inappropriate for offsetting the ray origin for refraction
rays. We resolve this problem by dynamically computing a
local value εdynamic = 2 ·max(εmin, | f (p)|) at each intersec-
tion point p. This yields εdynamic ≥ 2 · εmin which obviates
numerical problems (i.e. f (p) ≈ 0) and chooses an appro-
priate offset by incorporating the distance between the inter-
section point and the surface.

Additional care has to be taken when choosing εmin since
an excessively small value might not only cause numerical
problems, but also diminish the performance of tracing a
new refraction ray starting at the offset position as sphere
tracing has to accelerate away from the surface initially.
However, manually choosing εmin proved to be much eas-
ier and more robust than choosing a global ε. The cost for
computing εdynamic is negligible given that f (p) is already
known after tracing to the surface.

3.4. Discontinuity reduction

Usually, a limited number of sphere tracing iterations and
a constant threshold τ or a screen-space based criterion for
terminating the sphere tracing is utilized. Regardless of the
termination criterion, the intersection points’ distance from
the surface and the distance traveled along the ray are both
discontinuous over the screen-space domain as can be seen
in Figure 10 (top right).

This can lead to very characteristic and unpleasant arti-
facts in the resulting image, particularly when procedural
texturing is used with the intersection point obtained as an
input. To reduce these artifacts and to be able to generate sat-
isfying images even with reduced precision and a low num-
ber of iterations, we employ a fixed-point iteration scheme
to smooth out the discontinuities in f (p). We aim at points
satisfying Equation 2.

f (p) = err
(
‖pi−o‖2

)
(2)

c© The Eurographics Association 2014.

4

Keinert et al. / Enhanced Sphere Tracing

Figure 6: Illustration of our optimization for sphere tracing through convex objects represented by a signed distance bound.
From left to right: Convex object enclosed by a convex bounding volume; ray origin inside bounding volume but outside the
object; ray origin outside bounding volume and outside the object; ray origin inside the object and bounding volume with
sphere tracing from the outside; the same scenario as the previous with sphere tracing through the interior of the object.

where o denotes the origin of the ray and the function
err : R → R describes the permitted error parameterized
by the distance from the origin using a screen-space met-
ric as described by Hart and DeFanti [HD91]. The condition
(Equation 2) will be achieved by the following fixed-point
iteration scheme:

pi+1 = pi +d ·
(

f (pi)− err
(
‖pi−o‖2

))
(3)

We employ Equation 3 to iteratively post process the posi-
tions p retrieved by sphere tracing beforehand.

3.5. Optimization for convex objects

Hart et al. [Har96] proposed various optimizations for sphere
tracing convex objects. Most of these optimizations involve
the often costly computation of the gradient per iteration step
which, for performance reasons, is not feasible in real-time
applications.

Our optimization for convex objects focuses on acceler-
ating tracing through an object represented by a signed dis-
tance bound enclosed by a convex bounding object. To deter-
mine the intersection of a ray with the object we must handle
three cases:

1. Ray origin outside bounding volume
2. Ray origin inside bounding volume and outside the object
3. Ray origin inside bounding volume and inside the object

Case 1 (Figure 6 - center) is handled by sphere tracing from
the intersection with the bounding geometry. Case 2 (Fig-
ure 6 - center left) can be easily handled by applying sphere
tracing from the ray origin to the surface. If the ray is inside
the object (Case 3, Figure 6 - center right), instead of trac-
ing through the object, we advance the ray to its intersection
with the bounding geometry. Then, we perform sphere trac-
ing in the inverse ray direction, starting at the intersection
with the bounding object, which yields the same intersection
point as if having traced through the object.

Consequently, costly marching through the inside of the

object (Figure 6 - right) can be avoided completely. In com-
parison to tracing through the object, far fewer iterations are
required to find a ray-surface intersection.

4. Results

As shown in the teaser (Figure 1), our techniques can be
used in a wide variety of use cases and enable high-quality,
real-time rendering of scene representations with a signed
distance bound. Except for the rendering of the city scene
all images are generated without further image space post-
processing effects.

The materials used in our scenes are procedurally gener-
ated on the GPU and connected to the signed distance bound,
which defines the scene. To evaluate the material at an inter-
section point, we use modified, constructive solid geometry
operators, which also propagate material information. The
translucent materials in our real-time scenes are computed
in a fashion similar to Whitted [Whi80]. Unless otherwise
noted, the timings in this section do not include material
evaluation, shading or post processing. We measure the per-
formance of our techniques on an NVIDIA GTX Titan at

1 40 80

Figure 7: Comparison of the number of iterations required
without our over-relaxation (left) and with (ω = 1.2) (right).
The image shows the number of iterations at which a ray
terminates. Note, how more buildings become visible in the
distance in the right image since the maximum number of
iterations (80) is reached less quickly.

c© The Eurographics Association 2014.

5

Keinert et al. / Enhanced Sphere Tracing

Figure 8: Rendering object-space normals with (bottom
right) and without (top right) screen-space intersection point
selection using a maximum of 64 sphere tracing iterations
each. Note, how the thin layer of green pixels – depicting the
normals of the floor – following the silhouette of the object
disappears with our method.

a resolution of 1280 x 720. The sample scenes achieving
real-time rendering performance are entirely implemented
in DirectX/DirectCompute and rendered using a single dis-
patch call. The proposed techniques are not implementation-
dependent. Hence, we also integrated these into a GPU
path tracer implemented in CUDA to render signed distance
bounds with global illumination [Kaj86] as shown in Fig-
ure 1 (right). The path tracer uses analytic intersection tests

Figure 9: Visualization of f (p) · 100 at the intersection
points p without (top) and with (bottom) our discontinuity
reduction technique (5 iterations).

Figure 10: Our discontinuity reduction applied to a proce-
durally textured object. The close-up on the right shows a
significant quality improvement after applying 3 iterations
of the method (bottom).

for the parts of the scene that are not represented as a signed
distance bound, e.g. the walls and the mirror sphere.

Figure 7 shows a comparison of sphere tracing with and
without our over-relaxation (Section 3.1) method visualiz-
ing an effective decrease in the number of required function
evaluations. Our measurements with a maximum of 80 iter-
ations show significant performance improvements for our
over-relaxation method:

The function of the city scene shown in the teaser can
be ray cast in 16.829 ms (59.421 Hz) compared to 20.409
ms (48.998 Hz) with the original sphere tracing algorithm.
Ray casting the jewel scene yields similar results (with over-
relaxation 2.978 ms (335.744 Hz) and without 3.472 ms
(288.018 Hz)). Applying more complex lighting evaluation
to the jewel scene with two reflective and eight refractive
bounces using three discontinuity reduction iterations results
in 21.11 ms (47.366 Hz) with our method and 22.470 ms
(44.503 Hz) without. Improved performance can also be ob-
served for the path tracing integration at 101.934 ms (9.8 Hz)
compared to 118.302 ms (8.453 Hz) for one sample for each
pixel of the image (ω = 1.4, path tracing depth: 10 bounces).

It should be noted that finding an adequate value for the
ω ∈ [1..2] parameter can be challenging. Choosing an ap-
propriate ω allows for tracing deeper into the scene before
the maximum iteration count is reached and the ray is termi-
nated whereas using a larger ω causes an earlier premature
defaulting from over-relaxation to conventional sphere trac-
ing. In our test scenes, ω≈ 1.2 yielded the best performance
and allowed for improving visual quality.

The screen-space aware intersection point selection aids
in choosing a better intersection point candidate where the
maximum number of iterations has been reached but the
screen-space error is still above sub-pixel accuracy. This ef-
fect is evident in the close-up in Figure 8 where our approach
causes less aliasing and a more consistent rendering.

Using a dynamic εdynamic allows for robustly preventing
self-intersection. We merely need to define a global minimal

c© The Eurographics Association 2014.

6

Keinert et al. / Enhanced Sphere Tracing

Figure 11: The test scene for our convex optimization tech-
nique. Consisting of 3 spheres and a ground plane (directly
ray traced by analytic intersection tests), the dodecahedron
is represented by a signed distance bound as proposed by
Akleman et al. [AC99] and enclosed by a bounding sphere.

offset εmin value to obviate numerical problems in case an
intersection point is very close to the surface. The value for
εmin has to be chosen with care, since too small of an offset
can not only cause numerical problems but also decrease the
sphere tracing performance by spending a large number of
iterations for tracing spheres away from the surface.

For our final quality renderings, we use three iterations
of the proposed discontinuity reduction method. Visual ar-
tifacts occurring in combination with procedural texturing
(Figure 10) can be significantly reduced. As shown in Figure
9 discontinuities in f (p) can drastically be reduced with only
a few smoothing iterations at a low, fixed cost. Note that the
average of f (p) may be increased after applying our tech-
nique, resulting in an overall greater error but in significantly
reduced discontinuities, thus yielding better visual quality.

The test scene for the convex optimization technique is
shown in Figure 11 and uses analytic intersection tests for
the parts of the scene not represented as a signed distance
bound. Using two bounces for reflections and eight bounces
for refractions, we observed a speed up of around 10% (with
convex optimization 2.73 ms, without 3.03 ms).

5. Conclusion

We have presented a number of technical improvements
upon the classical sphere tracing algorithm that counteract
characteristic artifacts and corner cases normally encoun-
tered with this method while at the same time improving ray
traversal performance.

First, we presented an over-relaxation method, offering
a performance improvement over the classical approach,
particularly in applications where secondary rays are cast
through objects. We improved the selection of the intersec-
tion point candidate by choosing the smallest unbounding

sphere, as measured in screen space in case the maximum
number of iterations has been reached without reaching con-
vergence. Further, we have shown that a dynamic offset ε for
tracing refractive objects allows for using screen-space error
metrics and does not necessitate adhering a hard global error
threshold, which would be detrimental to performance.

The proposed fixed-point iteration procedure along the
ray after the final step of marching significantly reduces ar-
tifacts due to depth discontinuities, particularly when using
procedural texturing (low cost, high gain). Three iterations
of the fixed-point method are usually sufficient to eliminate
this class of artifacts.

For convex objects with simplified bounding geometry,
significant performance optimizations are possible if mul-
tiple intersection tests have to be performed (such as in glass
rendering).

For future avenues of research based on these findings,
the over-relaxation method could be improved upon by us-
ing more sophisticated logic to determine when to re-enable
over-relaxation after defaulting to the conservative sphere
tracing algorithm. An alternative could be automatic and/or
adaptive choice of the over-relaxation parameter ω.

For implementations on GPUs, further research is also
required for reducing computational penalties incurred in
image areas where the number of steps required for con-
vergence is highly non-uniform, thus leading to diverging
threads when execution is performed on GPUs. A good
heuristic for estimating the number of iterations required for
each pixel would allow for reordering the threads into groups
of similar workload and lead to a better utilization of the
massive parallel computation power available.

Acknowledgements

This work was partly supported by the Research Training
Group 1773 "Heterogeneous Image Systems", funded by the
German Research Foundation (DFG).

References
[AC99] AKLEMAN E., CHEN J.: Generalized Distance Func-

tions. In Proceedings of Shape Modeling and Applications
(SMI’99) (1999), IEEE, pp. 72–79. 7

[DK06] DAMMERTZ H., KELLER A.: Improving ray tracing pre-
cision by object space intersection computation. In Interactive
Ray Tracing 2006, IEEE Symposium on (2006), IEEE, pp. 25–
31. 2, 4

[Don05] DONNELLY W.: Per-pixel displacement mapping with
distance functions. In GPU Gems 2 (2005), Addison-Wesley,
pp. 123–136. 1

[Eva06] EVANS A.: Fast Approximations for Global Illumination
on dynamic Scenes. In ACM SIGGRAPH 2006 Courses (2006),
ACM, pp. 153–171. 2

[Har96] HART J. C.: Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer
12, 10 (1996), 527–545. 1, 2, 3, 5

c© The Eurographics Association 2014.

7

Keinert et al. / Enhanced Sphere Tracing

[HD91] HART J. C., DEFANTI T. A.: Efficient Antialiased Ren-
dering of 3-D Linear Fractals. In ACM SIGGRAPH Computer
Graphics (1991), vol. 25, ACM, pp. 91–100. 5

[HSK89] HART J. C., SANDIN D. J., KAUFFMAN L. H.: Ray
tracing deterministic 3-d fractals. In Proceedings of the 16th An-
nual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1989), SIGGRAPH ’89, ACM,
pp. 289–296. 1, 2

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings of
the 13th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1986), SIGGRAPH ’86,
ACM, pp. 143–150. 6

[Lik08] LIKTOR G.: Ray tracing implicit surfaces on the gpu.
Computer Graphics & Geometry 10, 3 (2008), 36–53. 2

[RMD11] REINER T., MÜCKL G., DACHSBACHER C.: Inter-
active Modeling of Implicit Surfaces using a Direct Visualization
Approach with Signed Distance Functions. Computers & Graph-
ics 35, 3 (2011), 596–603. 1, 2

[SN10] SINGH J. M., NARAYANAN P. J.: Real-time ray tracing
of implicit surfaces on the gpu. IEEE Transactions on Visualiza-
tion and Computer Graphics 16, 2 (2010), 261–272. 2

[Whi80] WHITTED T.: An improved illumination model for
shaded display. Commun. ACM 23, 6 (June 1980), 343–349. 5

c© The Eurographics Association 2014.

8

